WannierTools

WannierTools: an open-source software package for novel topological materials

Source on Github : https://github.com/quanshengwu/wannier_tools.

You can find more useful information on website https://www.wanniertools.org.

Aiming to investigate topological properties, electronic structures and transport properties of

  • Electron systems (Tested)
  • Phonon systems (Testing)

Join the QQ group to get supports: 709225749

Updates

Feb 24 2020 WannierTools V2.6.0 1. Add a new function to calculate the Landau levels including the Hofstadter butterfly and Wannier diagram.

  1. Extend the HmnR format from dense format which is defined by Wannier90 to a sparse format which only store the non-zero entries of HmnR.

Dec 9 2019 WannierTools V2.5.0 1. Add a new function to calculate ordinary magnetoresistance of a nonmagnetic metal or semimetal with given magnetic field. See ref.:

Magnetoresistance from Fermi surface topology, ShengNan Zhang, QuanSheng Wu, Yi Liu, and Oleg V. Yazyev, Phys. Rev. B 99, 035142 (2019)
  1. Add a new function to calculate unfolded bands from a supercell calculation.

July 9 2019 WannierTools V2.4.2 1. Write out POSCAR-slab to help user to perform DFT calculations.

  1. Add a new funtion to calculate the projected spin texture for the bulk system with vacuum or without inversion symmetry. BulkSpintext_calc = T. Add a new CARD called SELECTED_ATOMS to control the projection.

Sep 1 2018 WannierTools V2.4.0

Sep 1 2018 1. We have a big update in this version, since Changming Yue put his symmetrization code into WannierTools.

So now we can symmetrize the Wannier functions based tight binding model. This funcionality is included in the wannhr_symm/ folder.
  1. Fixed a bug about reading Rcut.
  2. Distinguish two dual surface in the slab band calculation.
  3. Update an example about calculating the mirror Chern number of ZrTe.

:blue:`Develop branch 2018 June 27 We added the test version of phonon system. Welcome to git clone the develop branch and test it. git clone https://github.com/quanshengwu/wannier_tools.git`

WannierTools V2.3.0

  1. Fixed a bug.
  2. Add Translate_to_WS_calc in the CONTROL namelist. This works for BulkFS_plane_calc.

WannierTools V2.2.9 1. Fixed several bugs.

  1. Added two new functionalities:
  1. Calculate the energy levels at given k points in the KPOINTS_3D card. This is called the point mode.
  2. Calculate anomalous Hall conductivity (AHC).

WannierTools V2.2.6

  1. Discard the Miller indicies
  2. Discard the third vector in the SURFACE card. The surface plane is specified only by two lattice vectors sitting on it.

Preliminaries

Installation of WannierTools (Linux or Mac)

Prerequisites

You need to install the following (mandatory) packages:

  • Fortran compiler (Gfortran or ifort)
  • MPICH version higher than 2.1.5
  • Lapack and Blas library

Compilation

First Check out the repository by

git clone https://github.com/quanshengwu/wannier_tools.git

Or download the .zip file directly from https://github.com/quanshengwu/wannier_tools, then uncompress it

Then Go into wannier_tools/src directory, Choose and Edit Makefile, Change the blas library ” libs= ” to your lapack+blas library

At present, we prepared 3 typical Makefiles, which are squential+gfotran, sequential+ifort and mpi+ifort.

For the mpi compiler, you should switch on the compile flag “-DMPI”, see Makefile.intel-mpi

After the compliation, the binary ‘wann_tools’ is copied to wannier_tools/bin/, you can put this path to the system PATH with

export PATH=/where/you/downloaded/wannier_tools/bin:$PATH

to the .bashrc file in your home directory.

Usage

Now you can enjoy your exploration for topological materials with WannierTools.

There are two files you have to prepare,

  1. wt.in. All the control and user specified parameters are inclued in this file.
  2. wannier90_hr.dat. Tight binding model constructed by Wannier90 or written in the format as wannier90_hr.dat.

After the preparation of these two files, you can just run wann_tools in the same folder

wt.x &

or in multi-cores

mpirun -np 4 wt.x &

The output information during the running are written in WT.out.

Plotting tools

  1. gnuplot
  2. xmgrace
  3. xcrysden
  4. matlab

Introduction of input files

Attention: From WannierTools 2.2, the name of input file changes from ‘input.dat’ to ‘wt.in’. The excutable binary changes from ‘wann_tools’ to ‘wt.x’

There are two input files you should prepare wt.in and wannier90_hr.dat

Main input file wt.in

Before executing wann_tools, you should cp the wt.in file in the directory wannier_tools/example by your own necessary.

For version later than 2.0, we updated the format of wt.in. The input file is structured in a number of NAMELIST and INPUT_CARDS.

Here we introduce the wt.in for Bi2Se3 as an example

&TB_FILE
Hrfile = 'wannier90_hr.dat'
Package = 'VASP'             ! obtained from VASP, it could be 'VASP', 'QE', 'Wien2k', 'OpenMx'
/

LATTICE
Angstrom
-2.069  -3.583614  0.000000     ! crystal lattice information
 2.069  -3.583614  0.000000
 0.000   2.389075  9.546667

ATOM_POSITIONS
5                               ! number of atoms for projectors
Direct                          ! Direct or Cartisen coordinate
 Bi 0.3990    0.3990    0.6970
 Bi 0.6010    0.6010    0.3030
 Se 0     0     0.5
 Se 0.2060    0.2060    0.1180
 Se 0.7940    0.7940    0.8820

PROJECTORS
 3 3 3 3 3          ! number of projectors
Bi pz px py         ! projectors
Bi pz px py
Se pz px py
Se pz px py
Se pz px py

SURFACE            ! See doc for details
 1  0  0
 0  1  0

&CONTROL
BulkBand_calc         = T
BulkFS_calc           = T
BulkGap_cube_calc     = T
BulkGap_plane_calc    = T
SlabBand_calc         = T
WireBand_calc         = T
SlabSS_calc           = T
SlabArc_calc          = T
SlabQPI_calc          = T
SlabSpintexture_calc  = T
Wanniercenter_calc    = T
BerryCurvature_calc   = T
EffectiveMass_calc    = T
/

&SYSTEM
NSLAB = 10              ! for thin film system
NSLAB1= 4               ! nanowire system
NSLAB2= 4               ! nanowire system
NumOccupied = 18        ! NumOccupied
SOC = 1                 ! soc
E_FERMI = 4.4195        ! e-fermi
Bx= 0, By= 0, Bz= 0     ! Bx By Bz
surf_onsite= 0.0        ! surf_onsite
/

&PARAMETERS
Eta_Arc = 0.001     ! infinite small value, like brodening
E_arc = 0.0         ! energy for calculate Fermi Arc
OmegaNum = 100      ! omega number
OmegaMin = -0.6     ! energy interval
OmegaMax =  0.5     ! energy interval
Nk1 = 21           ! number k points  odd number would be better
Nk2 = 21           ! number k points  odd number would be better
Nk3 = 21           ! number k points  odd number would be better
NP = 1              ! number of principle layers
Gap_threshold = 1.0 ! threshold for GapCube output
/

KPATH_BULK            ! k point path
4              ! number of k line only for bulk band
G 0.00000 0.00000 0.0000 Z 0.00000 0.00000 0.5000
Z 0.00000 0.00000 0.5000 F 0.50000 0.50000 0.0000
F 0.50000 0.50000 0.0000 G 0.00000 0.00000 0.0000
G 0.00000 0.00000 0.0000 L 0.50000 0.00000 0.0000

KPATH_SLAB
2        ! numker of k line for 2D case
K 0.33 0.67 G 0.0 0.0  ! k path for 2D case
G 0.0 0.0 M 0.5 0.5

KPLANE_SLAB
-0.1 -0.1      ! Original point for 2D k plane
 0.2  0.0      ! The first vector to define 2D k plane
 0.0  0.2      ! The second vector to define 2D k plane  for arc plots

KPLANE_BULK
-0.00 -0.00  0.00   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  0.50  0.00   ! The second vector to define 3d k space plane


KCUBE_BULK
-0.50 -0.50 -0.50   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  1.00  0.00   ! The second vector to define 3d k space plane
 0.00  0.00  1.00   ! The third vector to define 3d k cube


EFFECTIVE_MASS      ! optional
2                   ! The i'th band to be calculated
0.01                ! k step in unit of (1/Angstrom)
0.0 0.0 0.0         ! k point where the effective mass calculated.


WANNIER_CENTRES     ! copy from wannier90.wout
Cartesian
 -0.000040  -1.194745   6.638646
  0.000038  -1.196699   6.640059
 -0.000032  -1.192363   6.640243
 -0.000086  -3.583414   2.908040
  0.000047  -3.581457   2.906587
 -0.000033  -3.585864   2.906443
 -0.000001   1.194527   4.773338
  0.000003   1.194538   4.773336
 -0.000037   1.194536   4.773327
  0.000006  -1.194384   1.130261
 -0.000018  -1.216986   1.140267
  0.000007  -1.172216   1.140684
  0.000011  -3.583770   8.416406
 -0.000002  -3.561169   8.406398
 -0.000007  -3.605960   8.405979
  0.000086  -1.194737   6.638626
 -0.000047  -1.196693   6.640080
  0.000033  -1.192286   6.640223
  0.000040  -3.583406   2.908021
 -0.000038  -3.581452   2.906608
  0.000032  -3.585788   2.906424
  0.000001   1.194548   4.773330
 -0.000003   1.194537   4.773332
  0.000037   1.194539   4.773340
 -0.000011  -1.194381   1.130260
  0.000002  -1.216981   1.140268
  0.000007  -1.172191   1.140687
 -0.000006  -3.583766   8.416405
  0.000018  -3.561165   8.406400
 -0.000007  -3.605935   8.405982
Basic Parameters

TB_FILE, LATTICE, ATOM_POSITIONS, PROJECTORS and SURFACE are the necessary basic parameters. They are used by almost all functionalities listed in CONTROL namelist.

NAMELISTS

NAMELISTS are a standard input construct in Fortran90. The use of NAMELISTS is relatively flexible. All the variables in the NAMELISTS have default values. You should set them only when it is needed. Variables can be inserted in any order. Such as

&NAMELIST
needed_variable2=XX, needed_variable1=YY,
character_variable1='a suitable string'
/

There are 4 NAMELISTS included in wt.in. They are TB_FILE, SYSTEM, CONTROL, PARAMETERS.

Note

If you want to comment one line, please use ‘!’ instead of ‘#’, because our codes were written in Fortran.

TB_FILE

Set the filename of the tight-binding Hamiltonian. At present, we use the format of wannier90_hr.dat specified in Wannier90.

&TB_FILE
Hrfile = 'wannier90_hr.dat'
Package = 'VASP'             ! obtained from VASP, it could be 'VASP', 'QE', 'Wien2k', 'OpenMx'
/

The default value for Hrfile is ‘wannier90_hr.dat’. You could specify the first-principle package that used for obtaining wannier90_hr.dat. Default value for Package is ‘VASP’. We support VASP, QE, Wien2k, OpenMx, Abinit at present. Please report new software package to me if you needed.

Note

Package is very important if you use QE to generate your tight binding model. Because the orbital order in QE is different from VASP, Wien2k et al.. And it will affect the results of spin texture. If you got strange spin texture, please carefully check this tag.

SYSTEM

In this namelists, we specify the system you need to compute.

&SYSTEM
Nslab = 10
Nslab1= 6
Nslab2= 6
NumOccupied = 18        ! NumOccupied
SOC = 1                 ! soc
E_FERMI = 4.4195        ! e-fermi
Bx= 0, By= 0, Bz= 0     ! Bx By Bz
surf_onsite= 0.0        ! surf_onsite
/
  • NSlab : integer, Number of slabs for slab band, The default value is 10.
  • NSlab1, Nslab2 : integers, The thickness of nano ribbon. If you don’t want to calculate the band structure of it, then don’t set it. The default values are Nslab1= 1, Nslab2= 1.
  • NumOccupied : integer, Number of occupied Wannier bands. No default value.

Important: please set NumOccpuied correctly. It represents the “occpuied” wannier bands, not the total number of electrons. In the calculation of Wilson loop, the Wilson loop is the trace of NumOccupied bands. If you want to study the topology between the 8th and the 9th band, then set NumOccupied=8.

When you search Weyl points, nodal line or study the gap in some k slices, NumOccupied is also a very important. WannierTools will look for touching point or calculate the energy gap between the NumOccupied’th band and the (NumOccupied+1)’th band.

When you calculate the Fermi surface with BulkFS_calc= T, In order to save the storage, WannierTools only writes out 8(16) energy bands around NumOccupied’th band for SOC=0 (SOC=1) system into FS3D.bxsf.

If you don’t put any physical meaning into this tag, then it is very easy to understand.

_images/WannierTools-numoccupied.png
  • SOC : integer, Flag for spin-orbital coupling. If SOC=0, it means there is no SOC included in your given tight binding model. if SOC=1 or >0, it means SOC is already included in the tight binding model.
  • E_FERMI : real-valued, Fermi level for the given tight binding model.
  • Bx, By, Bz : real-valued, magnetic field value. Ignore it in this version.
  • surf_onsite : real-valued, Additional onsite energy on the surface, you can set this to see how surface state changes. But don’t set it if you don’t know what it is.
CONTROL

In this name list, you can set the keywords to setup the tasks. All these tasks can be set to be true at the same time.

&CONTROL
BulkBand_calc         = T        ! bulk band structure calculation flag
BulkFS_calc           = F
BulkGap_cube_calc     = F
BulkGap_plane_calc    = F
SlabBand_calc         = T
WireBand_calc         = F
SlabSS_calc           = T
SlabArc_calc          = F
SlabSpintexture_calc  = T
wanniercenter_calc    = F
BerryCurvature_calc   = F
/

Note

New features : :red: FindNodes_calc; WeylChirality_calc; Z2_3D_calc; Chern_3D_calc

We listed those features in the table below.

Flag options Function Output Tested
BulkBand_calc Band structure for bulk bulkek.dat, bulkek.gnu yes
BulkFS_calc Fermi surface for bulk system FS3D.dat, FS3D.bxsf yes
BulkGap_cube_calc Energy gap for a given k cube for bulk system GapCube.dat, GapCube.gnu yes
BulkGap_plane_calc Energy gap for a given k plane for bulk system GapPlane.dat, GapPlane.gnu yes
FindNodes_calc Find touching points between the Numoccpuied’th band and (Numoccpuied+1)’th band Nodes.dat, Nodes.gnu yes
SlabBand_calc Band structure for 2D slab system slabek.dat,slabek.gnu yes
WireBand_calc Band structure for 1D ribbon system ribbonek.dat,ribbonek.gnu yes
Dos_calc Density of state for 3D bulk system dos.dat yes
JDos_calc Joint Density of state for 3D bulk system jdos.dat yes
SlabSS_calc Surface spectrum A(k,E) along a kline and energy interval for slab system dos.dat_l, dos.dat_r, dos.dat_bulk,surfdos_l.gnu, surfdos_r.gnu, surfdos_l_only.gnu, surfdos_r_only.gnu, surfdos_bulk.gnu yes
SlabArc_calc Surface spectrum A(k,E0) for fixed energy E0 in 2D k-plane for slab system arc.dat_l, arc.dat_r, arc_l.gnu, arc_r.gnu, arc_l_only.gnu, arc_l_only.gnu, yes
SlabQPI_calc Surface QPI for fixed energy E0 in 2D k-plane for slab system arc.dat_l, arc.dat_r, arc_l.gnu, arc_r.gnu, arc_l_only.gnu, arc_l_only.gnu, arc.jdat_l, arc.jdat_r, arc.jsdat_l, arc.jsdat_r, arc_l_jdos.gnu, arc_l_jsdos.gnu, arc_r_jdos.gnu, arc_r_jsdos.gnu, yes
SlabSpintexture_calc Spin texture in 2D k-plane for slab system spindos_l.dat spindos_r.dat spintext_l.gnu spintext_r.gnu spintext_l.dat spintext_r.dat yes
wanniercenter_calc Wilson loop of a given 3D k-plane for bulk system wcc.dat, wcc.gnu yes
Z2_3D_calc Wilson loop in all 6 3D k-planes for bulk system Z2 number calculation wanniercenter3D_Z2.gnu, wanniercenter3D_Z2_{1-6}.dat yes
Chern_3D_calc Wilson loop in all 6 3D k-planes for bulk system Chern number calculation wanniercenter3D_Z2.gnu, wanniercenter3D_Z2_{1-6}.dat yes
WeylChirality_calc Weyl Chirality calculation for given k points find chiralities in WT.out, wanniercenter3D_Weyl.dat, wanniercenter3D_Weyl_*.gnu yes
BerryPhase_calc Berry phase with a 3D k path for bulk system find Berry phase in WT.out Yes
BerryCurvature_calc Berry Curvature in 3D k-plane for bulk system BerryCurvature.dat, BerryCurvature.gnu Berrycurvature-normalized.dat Berrycurvature-normalized.gnu yes
AHC_calc Calculate anomalous Hall conductivity for bulk system sigma_ahe.txt in unit of (Ohm*cm)^-1 yes
FindNodes_calc Find touch point between the N’th band to the (N+1)’th band in 3D BZ N=NumOccupied Nodes.dat Nodes.gnu yes
PARAMETERS

In this namelists, we listed some parameters necessary in the task you specified in namelists CONTROL.

&PARAMETERS
E_arc = 0.0             ! energy for calculate Fermi Arc
Eta_Arc = 0.001     ! infinite small value, like broadening
OmegaNum = 200      ! omega number
OmegaMin = -0.6     ! energy interval
OmegaMax =  0.5     ! energy interval
Nk1 = 50            ! number k points
Nk2 = 50            ! number k points
Nk3 = 50            ! number k points
NP = 2              ! number of principle layers
Gap_threshold = 1.0    ! threshold for GapCube output
/

E_arc : real-valued, energy for calculate Fermi arc, used if SlabArc_calc = T. The default value is 0.0.

Eta_Arc : real-valued, infinite same value for broadening used in Green’s function calculation. used if SlabArc_calc = T. Default value is 0.001.

[OmegaMin, OmegaMax] : real-valued, energy interval for surface state calculation. used if SlabSS_calc= T. No default value.

OmegaNum : integer valued, Number of slices in the energy interval [OmegaMin, OmegaMax]. used if SlabSS_calc= T. The default value is 100.

Nk1, Nk2, Nk3 : integer valued, Number of k points for different purpose. I will explain that later. Default value is Nk1=20, Nk2=20, Nk3=20.

NP : integer valued, Number of principle layers, see details related to iterative green’s function. Used if SlabSS_calc= T, SlabArc_calc=T, SlabSpintexture_calc=T. Default value is 2. You need to do a convergence test by setting Np= 1, Np=2, Np=3, and check the surface state spectrum. Basically, the value of Np depends on the spread of Wannier functions you constructed. One thing should be mentioned is that the computational time grows cubically of Np.

Gap_threshold : real valued. This value is used when you do energy gap calculation like BulkGap_cube_calc=T, BulkGap_plane_calc=T. The k points will be printed out in a file when the energy gap is smaller than Gap_threshold.

Input Card

The second important format in wt.in is the input_card format, which is relatively fixed format. First, we need a keyword like LATTICE, which is name of this card. After this keyword, the number of lines is fixed until it is done. There are several INPUT_CARDS in the wt.in. There is no order between the INPUT_CARDS. And any comments or blank lines could be added between the INPUT_CARDS. Lets introduce them one by one.

LATTICE

In this card, we set three lattice vectors coordinates. For the unit, you can use both Angstrom and Bohr. However, in the program, we use Angstrom. Bohr unit will be transformed to Angstrom automatically. No default values for the LATTICE CARD.

LATTICE
Angstrom
-2.069  -3.583614  0.000000     ! crystal lattice information
 2.069  -3.583614  0.000000
 0.000   2.389075  9.546667
ATOM_POSITIONS

In this card, we set the atom’s position.

ATOM_POSITIONS
5                               ! number of atoms for projectors
Direct                          ! Direct or Cartisen coordinate
Bi 0.3990    0.3990    0.6970
Bi 0.6010    0.6010    0.3030
Se 0     0     0.5
Se 0.2060    0.2060    0.1180
Se 0.7940    0.7940    0.8820

Note

1. Here the atom means that the atoms with projectors. not the whole atoms in the unit cell. 2. You can use “Direct” or “Cartesian” coordinates. “Direct” means the fractional coordinate based on the primitive lattice vector listed in LATTICE CARDS.

PROJECTORS

In this card, we set the Wannier projectors for the tight binding.

PROJECTORS
 3 3 3 3 3          ! number of projectors
 Bi pz px py         ! projectors
 Bi pz px py
 Se pz px py
 Se pz px py
 Se pz px py

Here we don’t take into account the spin degeneracy, only consider the orbital part. The name of orbitals should be “s”, “px”, “py”, “pz”, “dxy”, “dxz”, “dyz”, “dx2-y2”, “dz2”. I will add f orbitals latter. The order of the orbitals is very important if you want to analyze the symmetry properties. The default order in Wannier90 is “s”, “pz”, “px”, “py”, “dz2”, “dxz”, “dyz”, “dx2-y2”, “dxy”. You can find the orbital order from wannier90.wout.

Note

If you don’t care about the calculation related to symmetry like mirror chern number. The order or the name is not important. So for the f electrons, please write 7 random orbitals like px or dz2 or what else you want. This is important for f orbitals.

SURFACE

Attention: from version v2.2.6 on, you can specify a surface with SURFACE card with only two lattice vectors.

SURFACE CARD

This card is very important for slabs calculation. You need to read the following text carefully

SURFACE            ! See doc for details
 1  0  0           a11, a12, a13
 0  1  0           a21 a22 a23

In this card, we specify the surface you want to investigate. Basically, you should be aware of which surface you want to investigate, and of which direction you want to study the ribbon. So we need to define the new lattice vector system like this,

Choose two lattice vectors on the surface we want to study, and choose another vector which is not on this plane.

The slab calculations are base on the surface constructed by vector \(R_1', R_2'\).

Note

a11, a12, a13 …, a23 should be integers, in unit of three lattice vectors

_images/WannierTools-surfacecard.png
KPATH_BULK

This is the k path for bulk band structure calculation.

KPATH_BULK            ! k point path
4              ! number of k line only for bulk band
G 0.00000 0.00000 0.0000 Z 0.00000 0.00000 0.5000
Z 0.00000 0.00000 0.5000 F 0.50000 0.50000 0.0000
F 0.50000 0.50000 0.0000 G 0.00000 0.00000 0.0000
G 0.00000 0.00000 0.0000 L 0.50000 0.00000 0.0000

These k points are in unit of the reciprocal lattice constant built by the lattice vector LATTICE CARD. The number of k points is Nk1, which is set in NAMELISTS PARAMETERS. There are no default values for this CARD. So you must set some value in the input file when choosing BulkBand_calc=T.

KPOINTS_3D

You can calculate the properties on some kpoints you specified in point mode. e.g. the energy bands

KPOINTS_3D
4              ! number of k points
Direct         ! Direct or Cartesian
0.00000 0.00000 0.0000
0.00000 0.00000 0.5000
0.50000 0.50000 0.0000
0.00000 0.00000 0.0000

The number of lines below “Direct” should be the same as the number above “Direct”. You could add comments at the end of each line. But you can’t add additional comment lines between the formatted lines.

KPATH_SLAB

This is the k path for slab system.

KPATH_SLAB
2        ! numker of k line for 2D case
K 0.33 0.67 G 0.0 0.0  ! k path for 2D case
G 0.0 0.0 M 0.5 0.5

including the band structure calculation and the surface state calculation. It is necessary to set it when SlabBand_calc=T or SlabSS_calc=T. Number of k points along the line is Nk1.

KPLANE_SLAB

Define a 2D k space plane for arc plots.

KPLANE_SLAB
-0.1 -0.1      ! Original point for 2D k plane
 0.2  0.0      ! The first vector to define 2D k plane
 0.0  0.2      ! The second vector to define 2D k plane  for arc plots

The first line is the start point of the plane. The second and third line are the two vectors defining the plane. The number of k points for the 1st and 2nd vector is Nk1 and Nk2 respectively. Set this CARD when SlabArc_calc=T, SlabSpintexture_calc= T. The default values are

KPLANE_SLAB
-0.5 -0.5      ! Original point for 2D k plane
 1.0  0.0      ! The first vector to define 2D k plane
 0.0  1.0      ! The second vector to define 2D k plane  for arc plots
_images/wanniertools-kplane-slab.png
KPLANE_BULK

The same set as KPLANE_SLAB CARD, but for 3D case.

KPLANE_BULK
-0.50 -0.50  0.00   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  1.00  0.00   ! The second vector to define 3d k space plane

We can use these two vectors to calculate the band gap of a plane in 3D BZ, then we can check whether there are Weyl points or nodal line in that plane. Notice that these vectors is in unit of reciprocal vectors. Set this CARD when BulkGap_plane_calc=T, BerryCurvature_calc=T, wanniercenter_calc=T. Default values are

KPLANE_BULK
 0.00  0.00  0.00    ! Original point for 3D k plane
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  0.50  0.00   ! The second vector to define 3d k space plane
_images/wanniertools-kplane-bulk.png
KCUBE_BULK

The same set as KPLANE_BULK CARD

KCUBE_BULK
-0.50 -0.50 -0.50   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  1.00  0.00   ! The second vector to define 3d k space plane
 0.00  0.00  1.00   ! The third vector to define 3d k cube

We add another k vector to construct a k cube. Set this for BulkGap_cube_calc=T. The values list above are default values.

_images/wanniertools-kcube-bulk.png
EFFECTIVE_MASS

This card is set for effective mass calculation

EFFECTIVE_MASS      ! optional
2                   ! The i'th band to be calculated
0.01                ! k step in unit of (1/Angstrom)
0.0 0.0 0.0         ! k point where the effective mass calculated.
SELECTED_ATOMS

This card is useful if you want to get some energy spectrum that only projected on some specific atoms. For example, we can calculate the surface projected spin texture in the bulk system with vacuum.

The example is listed in the example/Bi2Se3-6Qlayers

SELECTED_ATOMS
2 ! number groups of selected atoms
6 12 18 24 30  ! top surface's atoms
1  7 13 19 25  ! bottom surface's atoms
WANNIER_CENTRES

This card will be usefull for Wilson loop calculations.

WANNIER_CENTRES     ! copy from wannier90.wout
Cartesian
 -0.000040  -1.194745   6.638646
  0.000038  -1.196699   6.640059
 -0.000032  -1.192363   6.640243
 -0.000086  -3.583414   2.908040
  0.000047  -3.581457   2.906587
 -0.000033  -3.585864   2.906443
 -0.000001   1.194527   4.773338
  0.000003   1.194538   4.773336
 -0.000037   1.194536   4.773327
  0.000006  -1.194384   1.130261
 -0.000018  -1.216986   1.140267
  0.000007  -1.172216   1.140684
  0.000011  -3.583770   8.416406
 -0.000002  -3.561169   8.406398
 -0.000007  -3.605960   8.405979
  0.000086  -1.194737   6.638626
 -0.000047  -1.196693   6.640080
  0.000033  -1.192286   6.640223
  0.000040  -3.583406   2.908021
 -0.000038  -3.581452   2.906608
  0.000032  -3.585788   2.906424
  0.000001   1.194548   4.773330
 -0.000003   1.194537   4.773332
  0.000037   1.194539   4.773340
 -0.000011  -1.194381   1.130260
  0.000002  -1.216981   1.140268
  0.000007  -1.172191   1.140687
 -0.000006  -3.583766   8.416405
  0.000018  -3.561165   8.406400
 -0.000007  -3.605935   8.405982

Those centres can be obtained from wannier90.wout by searching “Final state”. The default values for this card are atomic positions.

Special tags for phonon system (under testing)

Now we have one testing version of phonon system, you can write to wuquansheng@gmail.com for testing. There are two steps for using WannierTools for phonon system.

1. Use phonon_hr.py to get the tight-binding Hamiltonian from the FORCE_CONSTANTS or FORCE_SETS which generated with phonopy. This part was written by Changming Yue (yuechangming8 at gmail.com). You can write email to him to get the source. By default the hrfile name of the Hamiltonian is phonopyTB_hr.dat. You can change the name of it as whatever you want.

2. After the generation of hrfile. You need another wt.in file as the same as the electron system. One difference is that you need to specify Particle = ‘phonon’ in the TB_FILE namelist like

&TB_FILE
Hrfile = 'phonopyTB_hr.dat'
Particle = 'phonon'
/
LO-TO splitting

The LO-TO splitting can be treated as a pertubation see phonopy.

We need the following necessary CARDs in the wt.in. Take FeSi as an example

ATOM_MASS
2  ! number of types of atom, for FeSi, we have 2
4 4  ! number of atoms for each atom-type Fe4Si4
55.845 28.0855 ! atomic mass for each type of atom

LOTO_DT        ! Dielectric constant tensor
199.480 0 0
0 199.480 0
0 0 199.480

LOTO_BC   ! Born charge tensor for each type of atom
-4.3431500   0.6899200  -0.4140700
-0.4140800  -4.3431600   0.6899300
0.6898900  -0.4140600  -4.3431500
4.3909800   0.2300200  -0.1092900
-0.1093100   4.3909900   0.2300100
0.2300400  -0.1092800   4.3909800

LOTO_DT is a 3*3 matrix. LOTO_BC are Number-of-atom-types 3*3 matrices.

Tight-binding model wannier90_hr.dat

There are two kinds of storage format. One is called the dense format which is defined by software Wannier90. The other one is the sparse format where only the non-zeros hopping integrals are stored. The sparse-formatted tight-binding model storage is defined by WannierTools.

Dense format storage

This file contains the TB parameters. Usually, it can be generated by Wannier90.

Of cource, you can generate it from the Slater-Koster method or discretize k.p model onto a cubic lattice. The format should like this

written on  8May2016 at 13:57:00
         30
        547
   2    2    1    1    1    1    1    1    1    1    2    2    2    2    2
   1    1    1    2    1    1    1    2    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    4
   2    2    2    2    2    2    2    4    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    2    1
   1    1    1    1    1    1    2    1    1    1    1    1    1    1    1
   2    2    2    2    2    1    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    2    1    1    1    1
   1    1    1    2    1    1    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    2    2    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    2    1    1    1
   1    1    1    1    2    1    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    2    1    1    1    2    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    2
   1    1    1    1    1    1    1    2    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    2    1    1    1    2    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    1    2    1    1    1    1    1    1    1    2    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    2    2    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    1    1    2    1    1    1    1    1    1    1    2    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    1    2    2    2    2    2    1    1    1    1    1    1    1    1
   2    1    1    1    1    1    1    1    2    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    4
   2    2    2    2    2    2    2    4    1    1    1    1    1    1    1
   1    1    1    1    1    1    1    1    1    1    1    1    1    1    2
   1    1    1    2    1    1    1    2    2    2    2    2    1    1    1
   1    1    1    1    1    2    2
  -6    2   -3    1    1   -0.000002    0.000003
  -6    2   -3    2    1    0.000002    0.000017
  -6    2   -3    3    1   -0.000053    0.000002
  -6    2   -3    4    1   -0.000031    0.000002
  -6    2   -3    5    1    0.000001   -0.000000
  -6    2   -3    6    1   -0.000003    0.000002
  -6    2   -3    7    1    0.000037   -0.000001
  -6    2   -3    8    1   -0.000001   -0.000003
  -6    2   -3    9    1   -0.000005   -0.000003
  -6    2   -3   10    1   -0.000062   -0.000001
  -6    2   -3   11    1   -0.000001    0.000001
  -6    2   -3   12    1   -0.000031    0.000002
  -6    2   -3   13    1    0.000011   -0.000000
  -6    2   -3   14    1   -0.000001    0.000001
  -6    2   -3   15    1    0.000003    0.000003
  -6    2   -3   16    1    0.000000   -0.000010
  -6    2   -3   17    1   -0.000010   -0.000001
  -6    2   -3   18    1   -0.000000   -0.000008
  -6    2   -3   19    1    0.000000    0.000000
  -6    2   -3   20    1    0.000012   -0.000002
  ......
  1. The 1st line is a comment line with any content.
  2. The 2nd line is the number of Wannier orbitals, in consideration of spin degeneracy. We call it NUM_WANNS
  3. The 3rd line is the number of R lattice vectors, we call it NRPTS
  4. This section is about the degeneracy of R points. If you generate wannier90_hr.dat by you self, please set it to 1. There are NRPTS number of 1.
  5. This section gives the TB parameters. The first three integers are the coordinates or R vectors in unit of three lattice vectors. The 4th and 5th column are the band index (Row first). The 6th and 7th are complex entities of the Hamiltonian.
Sparse format storage

In the sparse format, we only store the non-zero hopping integrals. One example is like that

! Tight binding model for Twisted double bilayer graphene m=17, theta=1.890099 degree, only pz orbit considered
895664  ! number of non-zero lines of hmnr
7352  ! number of orbitals
9                 ! number of R points
1 1 1 1 1 1 1 1 1  ! degeneracies of each R point
0  0  0  1  1  -7.800000e-01  0
0  0  0  1  2  -2.806683e-01  0
0  0  0  1  3  -5.192147e-03  0
0  0  0  1  4  -2.806856e-01  0
0  0  0  1  5  -2.808505e-01  0
.....
  1. The 1st line is a comment line with any content.
  2. The 2nd line is the number of Wannier orbitals, in consideration of spin degeneracy. We call it NUM_WANNS
  3. The 3rd line is the number of R lattice vectors, we call it NRPTS
  4. This section is about the degeneracy of R points. If you generate wannier90_hr.dat by you self, please set it to 1. There are NRPTS number of 1.
  5. This section gives the TB parameters. The first three integers are the coordinates or R vectors in unit of three lattice vectors. The 4th and 5th column are the band index (Row first). The 6th and 7th are complex entities of the Hamiltonian.

Capabilities of WannierTools

Bulk band calculation (points mode, line mode and plane mode)

Points mode

You can calculate the energy bands with the given k points in the KPOINTS_3D KPOINTS_3D card.

Input

Typical flags for this mode in the wt.in.

&CONTROL
BulkBand_points_calc = T
/

KPOINTS_3D
4              ! number of k points
Direct         ! Direct or Cartesian
0.00000 0.00000 0.0000
0.00000 0.00000 0.5000
0.50000 0.50000 0.0000
0.00000 0.00000 0.0000
Output

The outputs for this mode is bulkek-pointsmode.dat

Line mode

Calculate bulk energy band for a series k lines. This is the basic calculation after the construction of Wannier functions. You have to compare your Wannier interpolated bands with the DFT bands. Those two bands should match well around the Fermi level.

Input

Typical flags for bulk band calculation in the wt.in.

&CONTROL
BulkBand_calc = T
/
&PARAMETERS
Nk1 = 101   ! Number of k points for each k line
/

KPATH_BULK     ! k point path
4              ! number of k lines only for bulk band
G 0.00000 0.00000 0.0000 Z 0.00000 0.00000 0.5000
Z 0.00000 0.00000 0.5000 F 0.50000 0.50000 0.0000
F 0.50000 0.50000 0.0000 G 0.00000 0.00000 0.0000
G 0.00000 0.00000 0.0000 L 0.50000 0.00000 0.0000

See CONTROL, PARAMETERS, KPATH_BULK

Output

The outputs for bulk band calculation are bulkek.dat and bulkek.gnu. You can get the band plot by running

gnuplot bulkek.gnu

or

xmgrace bulkek.dat

to get bandstucture plot.

The data structure for bulkek.dat

0.000000000       -2.673821992  119   80   80  119   80   80  205  138  138   70   40   40   70   40   40    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
0.016453872       -2.681536808  118   78   78  118   78   78  203  134  134   82   41   41   82   41   41    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
  1. The 1st column represents k points for the given kpath (KPATH_BULK)
  2. The 2nd column is the energy level
  3. From the 3rd to the n’th column are the projected weight of the wave function at each k point and each band onto each wannier orbitals. Those weights are normalized to 255 for the color plot convinence.

The subrotine for this feature is ek_bulk.f90 .

Plane mode

Calculate band structure in a k slice(plane) specified by KPLANE_BULK card. The mode is very useful to visualize the Dirac/Weyl cone. You have to set the following tags in wt.in

&CONTROL
BulkBand_plane_calc = T
/
&PARAMETERS
Nk1 = 51   ! Number of k points along the first vector in KPLANE_BULK
Nk2 = 51   ! Number of k points along the second vector in KPLANE_BULK
/

KPLANE_BULK   ! fractional coordinates
 0.00  0.00  0.30   ! Middle point for a k slice(plane) in 3D BZ. Usually, the position of Dirac points.
 0.50  0.00  0.00   ! The first vector to define k plane(slice) in 3D BZ
 0.00  0.50  0.00   ! The second vector to define k plane(slice) in 3D BZ

The output file is bulkek_plane.dat, bulkek_plane-matlab.dat and bulkek_plane.gnu. You can get bulkek_plane.png with

gnuplot bulkek_plane.gnu

The bulkek_plane-matlab.dat is in MATLAB data format. You can plot the Dirac cone with matlab.

The format of bulkek_plane.dat is as follows:

        # kx                 ky                 kz                 k1                 k2                 k3   E(Numoccupied-1)     E(Numoccupied)   E(Numoccupied+1)   E(Numoccupied+2)
-0.299354337       -0.518496963        0.180167841       -0.518496936       -0.299354384        0.180167841       -1.311721381       -1.311705191        0.588683811        0.588872215
-0.299354337       -0.504670376        0.180167841       -0.511583643       -0.287380208        0.180167841       -1.294078082       -1.293904952        0.586780093        0.587249790
...

Column 1-3rd are k points in cartesian coordinates. Column 4-6th are k points in a rotated cartesian coordinates where the x and y direction are line in the k plane and the z direction is perpendicular to the k plane you specified. Column 7-10th are energies at each k point. Here we only print out 4 energy bands around the fermilevel. It depends on NumOccupied. Usually, I choose column 4th and 5th as k coordinates and choose 8 and 9 as energy bands to show the Dirac cone shown below.

bulkek_plane.png

BulkFS calculation

Bulk Fermi surface calculation.

Input

You should specify the number of k points for each three reciprocal vectors Nk1, Nk2, Nk3 in NAMELISTS PARAMETERS

&CONTROL
BulkFS_calc = T
/
&PARAMETERS
Nk1 = 101   ! No. of slices for the 1st reciprocal vector
Nk2 = 101   ! No. of slices for the 2nd reciprocal vector
Nk3 = 101   ! No. of slices for the 3rd reciprocal vector
/

KCUBE_BULK
  0.00  0.00  0.00   ! Original point for 3D k plane
  1.00  0.00  0.00   ! The first vector to define 3d k space plane
  0.00  1.00  0.00   ! The second vector to define 3d k space plane
  0.00  0.00  1.00   ! The third vector to define 3d k cube

See CONTROL, PARAMETERS

Output

The outputs for this function are FS3D.bxsf. You can plot the FS with xcrysden run

xcrysden --bxsf FS3D.bxsf

to get the plot.

By the way, Bulk band and BulkFS calculations were already implemented in Wannier90 code.

BulkFS plane calculation

Bulk Fermi surface in a fixed k plane specified by KPLANE_BULK

Input

You should specify the number of k points for each three reciprocal vectors Nk1, Nk2 in NAMELISTS PARAMETERS

&CONTROL
BulkFS_Plane_calc = T
/
&PARAMETERS
Nk1 = 101   ! No. of slices for the 1st reciprocal vector
Nk2 = 101   ! No. of slices for the 2nd reciprocal vector
/

KPLANE_BULK  ! in fractional coordinates
  0.00  0.00  0.00   ! Original point for 3D k plane
  1.00  0.00  0.00   ! The first vector to define 3d k space plane
  0.00  1.00  0.00   ! The second vector to define 3d k space plane

See CONTROL, PARAMETERS

Output

The outputs for this function are fs.gnu, fs.png.

gnuplot fs.gnu

to get the plot.

_images/wanniertools-fermisurface.png

Bulk spin texture calculations

Calculate spin texture for bulk system that with vacuum or without inversion symmetry. For the bulk system with vacuum, you can calculate the surface projected spin texture. This is useful for comparing with the ARPES experiments. if you cut a slab system from a periodic tight binding model, then there is no charge relaxation on the surface which would change the surface state a lot. In this case, you have to do the first-principle calculations for a finite thickness slab system that with vacuum. Then you can construct Wannier functions for this system and use WannierTools to get the iso-energy plot of the Fermi surface (BulkFS_plane_calc =T) and get the surface projected spin texture (Bulkspintext_calc=T).

There is one example in the examples/Bi2Se3-6Qlayers.

Density state(DOS) calculations

Calculation density of state for the bulk system. The typical setup in wt.in:

&CONTROL
DOS_calc = T
/
&PARAMETERS
OmegaNum = 601    ! number of slices of energy
OmegaMin = -1.0   ! erergy range for DOS
OmegaMax =  1.0
Nk1 = 51   ! No. of slices for the 1st reciprocal vector
Nk2 = 51   ! No. of slices for the 2nd reciprocal vector
Nk3 = 51   ! No. of slices for the 3nd reciprocal vector
/

KCUBE_BULK
  0.00  0.00  0.00   ! Original point for 3D k plane
  1.00  0.00  0.00   ! The first vector to define 3d k space plane
  0.00  1.00  0.00   ! The second vector to define 3d k space plane
  0.00  0.00  1.00   ! The third vector to define 3d k cube

Outputs are dos.dat and dos.gnu. dos.eps will be obtained with

gnuplot dos.gnu

Energy gap calculations (plane and cube mode)

We support two modes for energy gap calculations.The formula is \(gap(k)= E_{NumOccupied+1}(k)- E_{NumOccpuied}(k)\)

Gap_plane mode

Calculate the energy gap for the k points in the KPLANE_BULK. This is useful to show Weyl points and nodal line structure.

Input

Typical input parameters for BulkGap_plane calculation

&CONTROL
BulkGap_Plane_calc = T
/
&PARAMETERS
Nk1 = 101   ! No. of slices for the 1st reciprocal vector
Nk2 = 101   ! No. of slices for the 2nd reciprocal vector
/

KPLANE_BULK
 0.00  0.00  0.00   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The first vector to define 3d k space plane(slice)
 0.00  0.50  0.00   ! The second vector to define 3d k space plane(slice)

See CONTROL, PARAMETERS, KPATH_BULK

Output

The outputs for Gap_plane mode are GapPlane.dat, GapPlane.gnu. The GapPlane.png will get by

gnuplot GapPlane.gnu

The head of GapPlane.dat

kx              ky              kz             gap             Ev4             Ev3             Ev2             Ev1             Ec1             Ec2             Ec3             Ec4              k1              k2              k3
0.00000000      0.00000000      0.00000000      0.45569845     -0.69109275     -0.69109055     -0.29654328     -0.29654073      0.15915772      0.15915871      1.24348171      1.24348457      0.00000000      0.00000000      0.00000000
0.03796028     -0.02191637      0.00548462      0.43770730     -0.77636510     -0.77598312     -0.26035113     -0.26027881      0.17742849      0.17771545      1.29499437      1.29505298      0.00000000      0.02500000      0.00000000
  • Column 1-3 are the Cartesian coordinates of the k points in the KPLANE_BULK, in unit of \(\frac{1}{Angstrom}\)
  • Column 4 is the energy gap
  • Column 5-12 are the energy value for valence and conduction bands close to the Fermi level. There are 4 conduction bands and 4 valence bands.
  • Column 13-15 are the Direct coordinates of the k points in the KPLANE_BULK
Gap_Cube mode

This helps us to find Weyl points and nodal line structure in the 3D BZ.

Input

Typical input parameters for BulkGap_cube calculation

&CONTROL
BulkGap_Cube_calc = T
/
&PARAMETERS
Nk1 = 101   ! No. of slices for the 1st reciprocal vector
Nk2 = 101   ! No. of slices for the 2nd reciprocal vector
Nk3 = 101   ! No. of slices for the 3rd reciprocal vector
/

KCUBE_BULK
-0.50 -0.50 -0.50   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The 1st vector to define 3d k cube
 0.00  1.00  0.00   ! The 2nd vector to define 3d k cube
 0.00  0.00  1.00   ! The 3rd vector to define 3d k cube

See CONTROL, PARAMETERS, KCUBE_BULK

Output

The outputs for Gap_plane mode are GapCube.dat, GapCube.gnu. The GapCube.png will get by

gnuplot GapCube.gnu

The head of GapCube.dat are

kx (1/A)        ky (1/A)        kz (1/A)      Energy gap              Ev              Ec      k1 (2pi/a)      k2 (2pi/b)      k3 (2pi/c)
0.00000000      0.87665487     -0.54846229      0.79075142     -0.34827281      0.44247861     -0.50000000     -0.50000000     -0.50000000
0.00000000      0.87665487     -0.51555455      0.86792416     -0.38635069      0.48157346     -0.50000000     -0.50000000     -0.45000000
  • Column 1-3 are the Cartesian coordinates of the k points where energy gap is small than Gap_threshold, in unit of \(\frac{1}{Angstrom}\)
  • Column 4 is the energy gap. Those values are smaller than Gap_threshold, see PARAMETERS
  • Column 5-6 are the energy value for valence and conduction bands close to the Fermi level. There are 4 conduction bands and 4 valence bands.
  • Column 7-9 are the Direct coordinates of the k points.

Find Nodes calculation

Beside by using GapCube and GapPlane to find Weyl/Dirac nodes or node lines, we can directly using FindNodes function. \(gap(k)= E_{NumOccupied+1}(k)- E_{NumOccpuied}(k)\)

Input

Typical input parameters for FindNodes_cube calculation

&CONTROL
FindNodes_calc = T
/
&PARAMETERS
Nk1 = 8   ! No. of slices for the 1st reciprocal vector
Nk2 = 8   ! No. of slices for the 2nd reciprocal vector
Nk3 = 8   ! No. of slices for the 3rd reciprocal vector
Gap_threshold = 0.0001 ! a value to determine which point should be identified as a node
/

KCUBE_BULK
-0.50 -0.50 -0.50   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The 1st vector to define 3d k cube
 0.00  1.00  0.00   ! The 2nd vector to define 3d k cube
 0.00  0.00  1.00   ! The 3rd vector to define 3d k cube

Note

Please don’t set Nk1, Nk2, Nk3 too large. Otherwise, it will become very time consuming. Usually, 15*15*15 is enough to get converged number of Weyl/Dirac points.

Output

Outputs are Nodes.dat and Nodes.gnu. Nodes.png will be obtained by

gnuplot Nodes.gnu

Here are heads of output for WTe2 Nodes.dat

# local minimal position and the related energy gap
#      kx          ky          kz         gap           E          k1          k2          k3
    0.219436   -0.045611   -0.000001    0.000000    0.056688    0.121432   -0.045363   -0.000003
   -0.219515   -0.045063   -0.000001    0.000000    0.056461   -0.121476   -0.044818   -0.000002
    0.220195   -0.038682   -0.000002    0.000000    0.051264    0.121852   -0.038472   -0.000003
   -0.220183   -0.038936   -0.000001    0.000000    0.051618   -0.121845   -0.038724   -0.000003
    0.219514    0.045063    0.000001    0.000000    0.056459    0.121475    0.044818    0.000003
   -0.219434    0.045620    0.000002    0.000000    0.056692   -0.121431    0.045371    0.000004
   -0.220194    0.038678    0.000000    0.000000    0.051259   -0.121851    0.038468    0.000001
    0.220181    0.038941    0.000000    0.000000    0.051620    0.121844    0.038729    0.000001

You will find that there are 8 Weyl points in the BZ as expected.

Weyl Chirality calculation

After you identify the positions of Weyl points, you could use this function to calculate the chirality, which tells you whether a Weyl point is a sink or a source of the Berry Curvature.

Input

Typical input parameters for WeylChirality_calc calculation

&CONTROL
WeylChirality_calc = T
/
&PARAMETERS
Nk1 = 41   ! No. of slices for the 1st reciprocal vector, berry phase integration direction
Nk2 = 21   ! No. of slices for the 2nd reciprocal vector
/

WEYL_CHIRALITY
8            ! Num_Weyls
Cartesian    ! Direct or Cartesian coordinate
0.004        ! Radius of the ball surround a Weyl point
 0.219436   -0.045611   -0.000000    ! Positions of Weyl points, No. of lines should larger than Num_weyls
-0.219515   -0.045063   -0.000000
 0.220195   -0.038682   -0.000000
-0.220183   -0.038936   -0.000000
 0.219514    0.045063    0.000000
-0.219434    0.045620    0.000000
-0.220194    0.038678    0.000000
 0.220181    0.038941    0.000000
Output

Outputs are wanniercenter3D_Weyl.dat and wanniercenter3D_Weyl_i.gnu. wanniercenter3D_Weyl.png will be obtained by

gnuplot wanniercenter3D_Weyl_i.gnu

for ((i=1; i<9; i++)); do gnuplot wanniercenter3D_Weyl_$i.gnu;done

Note

i is an integer from 1 to Num_weyls

Here are heads of output for WTe2 wanniercenter3D_Weyl.dat

# Chirality              -1               1               1              -1               1              -1               1              -1
       # k            phase           phase           phase           phase           phase           phase           phase           phase
 0.00000000      0.99970932      0.00005854      0.00004671      0.99975139      0.00005851      0.99970861      0.00004736      0.99975087
 0.05000000      0.89229069      0.08696587      0.08941971      0.90855415      0.08723118      0.89170870      0.09022452      0.90795187
 0.10000000      0.79659821      0.16589558      0.17112299      0.82248889      0.16697194      0.79511289      0.17279423      0.82108022

The first line shows the chiralities of each Weyl point. The first column is k point. From the 2nd to the last column show the Wannier charge center phase. In total, there are Num_weyls columns.

Slab band calculation

Before using iterative green’s function to get the surface state spectrum for semi-infinite system. We also can just construct a finite thickness slab system and calculate the band structure for it.

Note

For slab calculations, please read carefully the input card SURFACE

Input
&CONTROL
SlabBand_calc = T
/
&SYSTEM
NSLAB = 10
/
&PARAMETERS
Nk1 = 101   ! No. of slices for the 1st reciprocal vector
/
KPATH_SLAB
2        ! numker of k line for 2D case
K 0.33 0.67 G 0.0 0.0  ! k path for 2D case
G 0.0 0.0 M 0.5 0.5

See CONTROL, SYSTEM PARAMETERS, KPATH_SLAB

Output

Outputs are slabek.dat and slabek.gnu

The heads of slabek.dat are

0.0000000     -4.9575466     240
0.0508687     -5.0110528     226
0.1017373     -5.0566963     221
0.1526060     -5.0671994     220
...
  • The 1st column are k points in the KPATH_SLAB
  • The 2nd column are energy values.
  • The 3rd column represent the surface weight, which is normalized to 255.

The colorfull plot slabek.png of the slab energy bands can be obtained by

gnuplot slabek.gnu

Nanowire/nanoribbon band calculation

Band calculation for wire system. Only one direction is periodic, the other two directions are confined.

Input

You don’t have to set the k path, because it only has one direction.

&CONTROL
WireBand_calc = T
/
&SYSTEM
NSLAB1 = 4
NSLAB2 = 4
/
&PARAMETERS
Nk1 = 101   ! No. of slices for the 1st reciprocal vector
/

See CONTROL, SYSTEM PARAMETERS

Output

Outputs are ribbonek.dat and ribbonek.gnu. The data format of ribbonek.dat is the same as slabek.dat. Get plot ribbonek.png with

gnuplot ribbonek.gnu

Surface state ARPES calculation

One important feature for topological materials is the surface state. The bulk-edge correspondence tells us, if the topological property of the bulk system is nontrivial, then there will be nontrivial states on the surface. Nowadays, there are several method to detect the surface states. One direct way is the angle resolved photoemission spectroscopy (ARPES). Such spectrum can be obtained by the iterative Green’s function.

Note

For slab calculations, please read carefully the input card SURFACE

Input
&CONTROL
SlabSS_calc = T
/
&PARAMETERS
OmegaNum = 101
OmegaMin = -1.0
OmegaMax =  1.0
Nk1 = 101   ! No. of slices for the 1st reciprocal vector
NP = 2      ! principle layer
/
KPATH_SLAB
2        ! numker of k line for 2D case
K 0.33 0.67 G 0.0 0.0  ! k path for 2D case
G 0.0 0.0 M 0.5 0.5

See CONTROL, PARAMETERS, KPATH_SLAB

NP : integer valued, Number of principle layers, see details related to iterative green’s function. Used if SlabSS_calc= T, SlabArc_calc=T, SlabSpintexture_calc=T. Default value is 2. You need to do a convergence test by setting Np= 1, Np=2, Np=3, and check the surface state spectrum. Basically, the value of Np depends on the spread of Wannier functions you constructed. One thing should be mentioned is that the computational time grows cubically of Np.

Output

The output files are surfdos_l.dat, surfdos_r.dat, surfdos_l.gnu, surfdos_r.gnu. You could get the the spectral function plots with

gnuplot surfdos_l.gnu
gnuplot surfdos_r.gnu

_l and _r means the top and bottom surface.

Surface state QPI calculation

Settings for this feature are almost the same as Fermi arc calculation. Only difference is that you should set

# please set SlabQPI_kplane_calc = T from V2.4.2
&CONTROL
SlabQPI_kplane_calc          = T
/
Output
There are a lot of outputs for QPI calculation. including

arc.dat_l, arc.dat_r, arc_l.gnu, arc_r.gnu, arc.jdat_l, arc.jdat_r, arc.jsdat_l, arc.jsdat_r, arc_l_jdos.gnu, arc_l_jsdos.gnu, arc_r_jdos.gnu, arc_r_jsdos.gnu.

The gnu script with ‘only’ means we only plot the spectrum with the surface contribution, exclude the bulk contribution. (we remove file arc_l_only.gnu after v2.4.1 for the reason of misleading) jdat_l is the QPI data without consideration of spin scattering. jsdat_l is the QPI data in consideration of spin scattering.

Fermi arc calculation

Surface state spectrum at fixed energy level E_arc set in NAMELISTS PARAMETERS . Set SlabArc_calc=T, and set Nk1, Nk2, in NAMELISTS PARAMETERS, set k plane in KPLANE_SLAB CARD. Get the plots with “gnuplot arc_l.gnu”, “gnuplot arc_r.gnu”. _l and _r means the top and bottom surface.

Spin texture calculation

Spin texture calculation at a fixed energy level E_arc set in NAMELISTS PARAMETERS . Set Slabspintexture_calc=T, and set Nk1, Nk2, in NAMELISTS PARAMETERS, set k plane in KPLANE_SLAB CARD. Get the plots with “gnuplot spintext_l.gnu”, “gnuplot spintext_r.gnu”.

Note

Here we asumme that the tight-binding basis are pure spin up or pure spin down, which means that the spin up and spin down are not mixed in the basis. This could be realized if you don’t do the maximal-localized step by setting num_iter=0 in wannier90.win and select the projectors, disentanglement windown properly. If your Wannier functions are the maximal localized ones, then this feature doesn’t work. I suggest you using Wannier90 to get spin-texture which needs information from the first-principle calculations.

Berry phase calculation

Calculate Berry phase of a closed k path in 3D BZ. This is useful in a nodal line system. It is demonstrated that the Berry phase around a closed mirror symmetric k loop is either 0 or pi for a mirror protect nodal line system.

In WannierTools, you can specify a k path by a serials k points. Here we take the WC example, which has two nodal lines around K point.

Input
&CONTROL
BerryPhase_calc = T
/
&SYSTEM
NumOccupied = 10        ! Number of occupied Wannier orbitals
/
&PARAMETERS
Nk1 = 21    ! No. of slices for the 1st reciprocal vector
/

KPATH_BERRY
11
Direct
 0.3    0.333  -0.2
 0.3    0.333  -0.1
 0.3    0.333  -0.0
 0.3    0.333   0.1
 0.3    0.333   0.2
 0.33   0.333   0.2
 0.33   0.333   0.1
 0.33   0.333   0.0
 0.33   0.333  -0.1
 0.33   0.333  -0.2
 0.3    0.333  -0.2
Output

The value of Berry phase can be found in the WT.out.

Note

1. In principlely, the Berry phase for around a nodal line should be interger. However, the MLWF-TB model usally is not symmetric. So the value of Berry phase is close to zero or one.

  1. The first and the last kpoints in the KPATH_BERRY should be the same to form a loop.

Berry curvature calculation for 3D bulk case

Calculate Berry curvature at a fixed k plane in 3D BZ. Set BerryCurvature_calc=T, and set Nk1, Nk2, in NAMELISTS PARAMETERS, set k plane in KPLANE_BULK CARD. Get the plot with “gnuplot Berrycurvature.gnu”.

please set NumOccpuied correctly. It represents the “occpuied” wannier bands, not the total number of electrons. In this application, the Berrycurvature is the summation over NumOccupied bands.

A typical input (take ZrTe as an example):

&CONTROL
 BerryCurvature_calc=T
/
&SYSTEM
NumOccupied = 8         ! Number of occupied Wannier orbitals
/
&PARAMETERS
Nk1 = 101    ! No. of slices for the 1st reciprocal vector
Nk2 = 101    ! No. of slices for the 2st reciprocal vector
/

KPLANE_BULK
0.00  0.00  0.00   ! Central point for 3D k slice  k3=0
1.00  0.00  0.00   ! The first vector. Integrate along this direction to get WCC
0.00  1.00  0.00   ! WCC along this direction, for Z2, usually half of the reciprocal lattice vector

Berry curvature calculation for slab system

Note

Not well tested.. Use it carefully.

A typical input:

&CONTROL
 BerryCurvature_slab_calc=T
/

&SYSTEM
NumOccupied = 8  ! Number of occupied Wannier orbitals of the unit cell
/

&PARAMETERS
Nk1 = 101    ! No. of slices for the 1st reciprocal vector
Nk2 = 101    ! No. of slices for the 2st reciprocal vector
/

KPLANE_SLAB
0.00  0.00         ! Central point for 3D k slice  k3=0
1.00  0.00         ! The first vector. Integrate along this direction to get WCC
0.00  1.00         ! WCC along this direction, for Z2, usually half of the reciprocal lattice vector

Anomalous Hall conductivity (AHC)

Calculate AHC in the energy range [OmegaMin, OmegaMax]. AHC is in unit of (Ohm*cm)^-1.

Relevant inputs are

&CONTROL
AHC_calc=T
/

&PARAMETERS
OmegaNum = 601    ! number of slices of energy
OmegaMin = -1.0   ! erergy range for AHC
OmegaMax =  1.0
Nk1 = 51   ! No. of slices for the 1st reciprocal vector
Nk2 = 51   ! No. of slices for the 2nd reciprocal vector
Nk3 = 51   ! No. of slices for the 3nd reciprocal vector
/

KCUBE_BULK
  0.00  0.00  0.00   ! Original point for 3D k plane
  1.00  0.00  0.00   ! The first vector to define 3d k space plane
  0.00  1.00  0.00   ! The second vector to define 3d k space plane
  0.00  0.00  1.00   ! The third vector to define 3d k cube

Output is sigma_ahe.txt.

Wannier charge center/Wilson loop calculation

Wannier charge center, which is sometimes called Wilson loop can be calculated by set WannierCenter_calc=T and set KPLANE_BULK CARD, set number of k points for two vectors is Nk1, Nk2 in NAMELISTS PARAMETERS. Notice: You should notice that the first vector in KPLANE_BULK CARD is the integration direction, this vector should be equal to one primitive reciprocal lattice vector. If you want to calculate the Z2 number, Please set the second vector to be half of the reciprocal lattice vector. You can get the Wannier charge center along the second k line. See more details In the paper written by Alexey. Soluyanov (2011). If you want to calculate the Chern number, Please set the second vector to be one primitive reciprocal lattice vector.

Note

Important: please set NumOccpuied correctly. It represents the “occpuied” wannier bands, not the total number of electrons. In this application, the Wilson loop is the trace of NumOccupied bands. If you want to study the topology between the 8th and the 9th band, then set NumOccupied=8.

Output

Outputs are wcc.dat and wcc.gnu, the format of wcc.dat is:

#         k      largestgap  sum(wcc(:,ik))      wcc(i, ik)(i=1, NumOccupied)
 0.00000000      0.60940556      0.99998388      0.00000850      0.07701431      0.07702018      0.19328973      0.19329593      0.28118760      0.28119336      0.49998615      0.50000060      0.71881052      0.71881646      0.80675987      0.80676424      0.92297767      0.92298328      0.99993530      0.99994085      0.99999935
 0.00312500      0.61256609      0.99998716      0.00030351      0.00082300      0.07688154      0.07709302      0.19117885      0.19525313      0.27952027      0.28297172      0.49188658      0.50810192      0.71703027      0.72048573      0.80480135      0.80887751      0.92290159      0.92311931      0.99908212      0.99967575
 0.00625000      0.61569946      0.99999557      0.00061525      0.00168708      0.07668131      0.07711296      0.18887026      0.19709893      0.27796336      0.28485788      0.48373617      0.51625672      0.71514220      0.72204447      0.80295562      0.81118878      0.92287871      0.92332259      0.99821913      0.99936414

 ......

The second column is the position of the largest gap of WCC. It is used for drawing a line to calculate the Z2 number (see A. Soluyanov 2011), From the fourth column to the last column, they are wcc for the occupied bands specified with “NumOccupied”. The third line is the summation of the WCC over all the “occupied” bands. It’s usefull for telling the Chern number.

Example

Take Bi2Se3 for example, we calculate the Wilson loop (WCC) at k3=0 plane, where k1, k2, k3 is in unit of reciprocal lattice vector. The you should set the particular inputs like this

&CONTROL
 WannierCenter_calc=T
/
&SYSTEM
NumOccupied = 10        ! Number of occupied Wannier orbitals
/
&PARAMETERS
Nk1 = 41    ! No. of slices for the 1st reciprocal vector
Nk2 = 41    ! No. of slices for the 2st reciprocal vector
/

KPLANE_BULK
0.00  0.00  0.00   ! Original point for 3D k slice  k3=0
1.00  0.00  0.00   ! The first vector. Integrate along this direction to get WCC
0.00  0.50  0.00   ! WCC along this direction, for Z2, usually half of the reciprocal lattice vector

For 2D materials stacked along z direction, you could think it as a 3D material with weak coupling along z direction. You can use this function to get the Z2 value at k3=0 plane to characterize the topology.

Use “gnuplot wcc.gnu” to get “wcc.eps” plot.

Here is an example.

_images/WannierTools_WCC_plane.png

Mirror Chern number calculation

At present, We can only calculate mirror Chern number for the simplest case (1. There is only one atom per atom’s type in the unit cell e.g. ZrTe. 2. kz=0 is the mirror plane we concern). For the more complex case, you can modify the source code by setting the mirror operator properly. Define your own mirror operator based on the atomic like Wannier functions in the symmetry.f90 and change the subroutine wanniercenter_mirror in wanniercenter.f90.

After properly setting of the mirror operator, you can run WannierTools with the basic parameters and the following additional parameters (Here we take ZrTe at kz=0 plane as an example)

&CONTROL
 MirrorChern_calc=T
/
&SYSTEM
NumOccupied = 8         ! Number of occupied Wannier orbitals
/
&PARAMETERS
Nk1 = 101   ! No. of slices for the 1st reciprocal vector
Nk2 = 101   ! No. of slices for the 2st reciprocal vector
/

KPLANE_BULK
0.00  0.00  0.00   ! Original point for 3D k slice  k3=0
1.00  0.00  0.00   ! The first vector. Integrate along this direction to get WCC, should be a close path
0.00  1.00  0.00   ! WCC along this direction, for Chern, usually one reciprocal lattice vector
Output

The mirror Chern number can be found in the WT.out. The WCC/Wilson loop is included in the files wcc-mirrorminus.dat and wcc-mirrorplus.dat. The gnuplot script is wcc-mirrorchernnumber.gnu. The format of wcc-mirrorplus.dat is:

#      k    sum(wcc(:,ik))      wcc(:, ik)
0.00000000      0.93401098      0.26748313      0.33122324      0.37761566      0.95768895
0.01000000      0.93458410      0.26776394      0.33149191      0.37747362      0.95785463
0.02000000      0.93515725      0.26806334      0.33205065      0.37717770      0.95786557
0.03000000      0.93572256      0.26838206      0.33288980      0.37673021      0.95772050
...

The first column is k=i/Nk2 (i=0, Nk2), we take the second vector defined in KPLANE_BULK as unit of 1. The second line is the summation of the WCC over all the “occupied/2” bands. It’s usefull for telling the Chern number. From the third column to the last column, they are wcc for the occupied/2 bands specified with “NumOccupied”.

Z2 number for 3D bulk materials

We can get Z2 topological index (v0, v1v2v3) from the z2 calculations of six time reversal invariant planes, i.e. (a) k1=0.0; (b) k1=0.5; (c) k2=0.0; (d) k2=0.5; (e) k3=0.0; (f) k3=0.5; Usually, you can call “Wannier charge center calculation for a plane” six times. Here we packed them up to get another function. You can set the input file like the following.

Input

The necessary tags that you should set in the wt.in

&CONTROL
Z2_3D_calc = T
/
&PARAMETERS
NumOccpuied = 18  ! No. of occupied wannier bands
Nk1 = 41    ! No. of slices of the k points for WCCs
Nk2 = 41    ! No. of slices of the k points for WCCs
/
Output

Outputs are wanniercenter3D_Z2_1.dat, wanniercenter3D_Z2_2.dat, wanniercenter3D_Z2_3.dat, wanniercenter3D_Z2_4.dat, wanniercenter3D_Z2_5.dat, wanniercenter3D_Z2_6.dat and wanniercenter3D_Z2.gnu. The z2 value can be found in the WT.out by searching “z2 number for 6 planes”. The WCC (Wilson loop) plots wanniercenter3D_Z2.eps can be got with:

gnuplot wanniercenter3D_Z2.gnu

Note

Important: please set NumOccpuied correctly. It represents the “occpuied” wannier bands, not the total number of electrons. In this application, the Wilson loop is the trace of NumOccupied bands. If you want to study the topology between the 8th and the 9th band, then set NumOccupied=8.

About the Z2 index for 3D system.

v0= (z2(ki=0)+z2(ki=0.5))mod 2

vi= z2(ki=0.5)

For the 2D system, if you set the Z axis as the stack axis, please only take the Z2 number at k3=0 plane.

Chern number for 3D bulk materials

Basically, you can calculate the Chern number for a closed manifold, for example, a 2D torus. For this purpose, I would suggest you using
WannierCenter_calc=T in the calculation.

We can get Chern number of six k planes, i.e. k1=0.0; k1=0.5; k2=0.0; k2=0.5; k3=0.0; k3=0.5; where k1, k2, k3 is in fractional units. Usually, you can call “Wannier charge center calculation for a plane” six times. Here we packed them up to get another function. You can set the input file like the following.

Basically, the method used here is very similar to the one used in the Z2 number calculations. We also use the Wilson loop method. However, for Z2 calculation, you only take half of the size of a time reversal invariant slice. For Chern number calculation, you need a closed momentum surface. For example, for the k1=0.0 plane, half of the time reversal invariant slice would be defined like this:

k2 is in [0, 0.5]
k3 is in [0, 1]

The full closed momentum surface would defined like this

k2 is in [0, 1]
k3 is in [0, 1]
Input

The necessary tags that you should set in the wt.in

&CONTROL
Chern_3D_calc = T
/
&PARAMETERS
NumOccpuied = 18  ! No. of occupied wannier bands
Nk1 = 41    ! No. of slices of the k points for WCCs
Nk2 = 41    ! No. of slices of the k points for WCCs
/
Output

Outputs are wanniercenter3D_Chern.dat and wanniercenter3D_Chern.gnu. The Chern number can be found in the WT.out by searching “Chern number for 6 planes”. The WCC (Wilson loop) plots wanniercenter3D_Chern.eps can be got with:

gnuplot wanniercenter3D_Chern.gnu

Note

Important: please set NumOccpuied correctly. It represents the “occpuied” wannier bands, not the total number of electrons. In this application, the Wilson loop is the trace of NumOccupied bands. If you want to study the topology between the 8th and the 9th band, then set NumOccupied=8.

For the 2D system, if you set the Z axis as the stack axis, please only take the Chern number at k3=0 plane.

Landau level calculations

This functionality is under testing, not released yet. Developed by QSWu and YFGuan

By applying the uniform magnetic field along one lattice vector, the Landau level spectrum can be calculated by the Peierls substitution.

Here we put one example of Graphene. The input file wt.in is like this

&TB_FILE
Hrfile = 'wannier90_hr.dat'
/

!> bulk band structure calculation flag
&CONTROL
BulkBand_calc                 = T
Hof_Butt_calc                 = T
LandauLevel_k_calc            = T
LandauLevel_wavefunction_calc = F
/

&SYSTEM
NSLAB = 200             ! the size of magnetic supercell
NumOccupied = 1         ! NumOccupied
SOC = 0                 ! soc
E_FERMI = -1.2533       ! e-fermi
/

&PARAMETERS
E_arc = 0.00        ! energy for calculate Fermi Arc
OmegaNum = 201      ! number of eigenvalues to calculate the Landau levels
Nk1 = 100           ! number k points for each line in the kpath_bulk
/

LATTICE
Angstrom
2.1377110  -1.2342080   0.0000000
0.0000000   2.4684160   0.0000000
0.0000000   0.0000000   10.000000

!> used when you want to study the projections on the orbital for each band
SELECTEDORBITALS
1  ! NumberofSelectedOrbitals without spin degeneracy
1  ! SelectedOrbitals indices without spin degeneracy

ATOM_POSITIONS
2                               ! number of atoms for projectors
Direct                          ! Direct or Cartisen coordinate
C 0.333333 0.666667 0.500000 C
C 0.666667 0.333333 0.500000 C

PROJECTORS
1 1        ! number of projectors
C  pz
C  pz

SURFACE
 0  0  1     ! magnetic field direction in units of lattice vectors
 1  0  0

KPATH_BULK            ! k point path
1              ! number of k line only for bulk band
M   0.50000  0.00000  0.00000   G   0.00000  0.00000  0.00000

WANNIER_CENTRES
Cartesian
0.712570  1.234209  5.000000
1.425141 -0.000001  5.000000

We can calculate the Hofstader butterfly plot by setting Hof_Butt_calc = T. Nslab is the size of the supercell. The corresponding magnetic field strength can be found in the output WT.out.

Since the calculation for magnetic supercell is very heavy, we have two versions of eigenvalue solvers. One is direct diagonalization, the other one is the ARPACK solver, which is based on the sparse matrix. So you have to install the ARPACK package, and specify the library in the Makefile. You don’t have to choose the solvers. It is automatically chosen according to the matrix dimensionality. If the dimensionality of the Hamiltonian matrix of the magnetic supercell is larger than 1600, WannierTools will call the sparse matrix solver.

Once the sparse matrix solver is chosen. You have to set E_arc and OmegaNum, which means you are going to calculate 2*OmegaNum+1 Landau energy levels around E_arc respect to the Fermi level.

The magnetic field is along the first vector specified in the SURFACE card.

_images/WannierTools-landaulevel.png

Ordinary magnetoresistance calculations

After version 2.6.0, WannierTools is able to calculate magnetoresistance of a non-magnetic metal or semimetal which has Fermi surfaces. The theory part was described in Phys. Rev. B 99, 035142 (2019).

With control tag Boltz_OHE_calc=T and Symmetry_Import_calc = T, we can get the conductivity tensor for a given magnetic direction specified by Btheta and Bphi.

Here we put one example of Cu. The input file wt.in is like this

&TB_FILE
Hrfile = 'wannier90_hr.dat_nsymm48'   ! Here we symmetrized the TB model
/

&CONTROL
Boltz_OHE_calc        = T   ! calculate ordinary magnetoresistance
Symmetry_Import_calc  = T ! please set it to be true for magnetoresistance calculation
/

&SYSTEM
SOC = 0                ! There is no SOC in the hr file : SOC=0; with soc : SOC=1
E_FERMI = 7.7083       ! e-fermi in eV
Btheta= 0, Bphi= 90    ! magnetic field direction, Btheta is the angle with z axial, Bphi is the angle with respect to x axial in the x-y plane
NumOccupied = 6        ! set it anyway even don't use it. Usually, It's the valance band maximum band index.
/

&PARAMETERS
OmegaNum = 1        ! omega number
OmegaMin =  0.0     ! energy interval
OmegaMax =  0.0     ! energy interval  chemical potential \mu_i=OmegaMin+ (i-1)/(OmegaNum-1)*(OmegaMax-OmegaMin)
Nk1 =61             ! Kmesh(1) for KCUBE_BULK
Nk2 =61             ! Kmesh(2) for KCUBE_BULK
Nk3 =61             ! Kmesh(3) for KCUBE_BULK
BTauNum= 100        ! Number of B*tau we calculate
BTauMax = 40.0      ! The maximum B*tau, starting from Btau=0.
Tmin = 30           ! Temperature in Kelvin
Tmax = 330          ! Temperature in Kelvin
NumT = 11           ! number temperature we calculate. T_i=Tmin+(Tmax-Tmin)/(NumT-1)*(i-1)
/

LATTICE
Angstrom  ! Unit of length: Angstrom or Bohr
   0.0000000   1.8075000   1.8075000
   1.8075000   0.0000000   1.8075000
   1.8075000   1.8075000   0.0000000

ATOM_POSITIONS
1                               ! number of atoms for projectors
Cartisen                          ! Direct or Cartisen coordinate
Cu    0.000000      0.000000      0.000000

PROJECTORS
9            ! number of projectors
Cu s pz px py dz2 dxz dyz dx2-y2 dxy

SELECTEDBANDS
1
6   ! the 6'th band is crossing the Fermi level.

KCUBE_BULK   ! in unit of primitive reciprocal lattice vectors.
 0.00  0.00  0.00   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  1.00  0.00   ! The second vector to define 3d k space plane
 0.00  0.00  1.00   ! The third vector to define 3d k cube

The above input file indicates that 1). The magnetic field is along z direction (Btheta=0). 2). The chemical potential is set to Zero. by OmegaNum=1; OmegaMin=Omegamax=0. 3). The temperature is set as an arrary from 30K to 330K with 30 as interval by Tmin=30; Tmax=330; NumT=11. 4). The magnetic field strenth is set as B*tau= (0, 40) with 100 points by BTauMax=40; BTauNum=100. 5). The k-mesh is set as 61*61*61.

On output, the conductivity tensor sigma/tau as a function of B*Tau for each band n, each chemical potential mu and each temperature T are presented in file sigma_band_${n}_mu_${mu}eV_T_${T}K.dat

If there are serveral band, you should write a script to add up all the conductivity tensor for all the bands, then take an inverse of it to get the resistivity tensor.

On output, there are also resistivity tensor files for each band, each chemical potential and each temperature. It’s usfull to get general information for each band.

For more illustration of example Cu, you can visit https://www.wanniertools.org/examples/ordinary-magnetoresistance-of-cu/

Note

If you obtained negative magnetoresistance at large Btau, then please increase NSlice_Btau_Max such that the negative magnetoresistance vanishes. The Lorentz force will only give us positive magnetoresistance.

Symmetrization of wannier90_hr.dat New usesful for ir2tb

Here is a brief introduction of the symmetrization functionalities. Basically, wannhr_symm is an independent package based on Python2.7 written by Changming Yue (yuechangming8@gmail.com). Although this package is very useful, its requirement is also very restrict.

  1. The Wannier functions must be atomic like, which means there should be very weak hybridization between orbitals. It’s not possible to deal with the sp2, sp3 like wannier orbitals.
  2. At present, it can only take care of the s, p, d, t2g, eg orbitals. p orbitals means all three orbitals ordered with pz, px, py. d orbitals are ordered as “dz2”, “dxz”, “dyz”, “dx2-y2”, “dxy”. Such situation is automatically satisfied with in VASP+Wannier90
  3. The file name of tight binding Hamiltonian should be ‘wannier90_hr.dat’
  4. This symmetrization process is crucial to run “ir2tb” to order to obtain the correct irreducible representations, since the Wannier90 usually does not enforce the symmetries of the system.

Tutorial: learning WannierTools through examples

Bi2Se3 (3D strong TI)

Bi2Se3 is a strong topological insulator. The Z2 topological index is (1, 000). Theoretical and experimental validation can be found in Nature Physics 5, 438-442 (2009) and Nature Physics 5, 398-402 (2009) respectively. Here we show you how to use WannierTools to study strong topological materials. The input file and some related files are included in each distribution.

Here is the primitive unit cell of Bi2Se3

_images/Bi2Se3_poscar.png

First principle calculation

Firstly, you need to study the electronic structure of Bi2Se3 with first-principle software package, like VASP, Wien2k, Abinit, Quantum-espresso et al. In this tutorial, we select VASP. Here is the calculated band structure.

_images/Bi2Se3_vasp_band.png

Band structure

Then Wannier90 is applied to construct MLWF tight binding (TB) model (see more details from http://www.wannier.org). Here we only tell you that the p orbitals of Bi and Se are selected as the initial projectors for Wannier90. The band structure calculated from the MLWF-TB model is as follows

_images/Bi2Se3_TB_band.png

This band structure can be calculated directly from Wannier90. Also can be calculated from WannierTools. The settings in WT.in are

&CONTROL
BulkBand_calc         = T
/

&SYSTEM
SOC = 1                 ! soc
E_FERMI = 4.4195        ! e-fermi
/

&PARAMETERS
Nk1 = 41            ! number k points  odd number would be better
/

KPATH_BULK            ! k point path
4              ! number of k line only for bulk band
G 0.00000 0.00000 0.0000 Z 0.00000 0.00000 0.5000
Z 0.00000 0.00000 0.5000 F 0.50000 0.50000 0.0000
F 0.50000 0.50000 0.0000 G 0.00000 0.00000 0.0000
G 0.00000 0.00000 0.0000 L 0.50000 0.00000 0.0000

Z2 topological number

From the band structure above, it is clear that it is a insulator. This is also can be checked by calculating the density of state (DOS). In order to identify the topological properties, we have to calculate the Z2 topological number, which is valid for time-reversal invariant system with a continuous full gap in the Brilloin Zone. The Z2 topological number for 3D bulk system can be obtained from the calculation of the Wilson loop (Wannier charge center) for the six time-reversal invariant momentum plane. k1=0.0, k1=0.5; k2=0.0; k2=0.5; k3=0.0, k3=0.5. It can be done using WannierTools with setting in WT.in

&CONTROL
Z2_3D_calc            = T
/

&SYSTEM
SOC = 1                 ! soc
NumOccupied = 18        ! Number of occupied Wannier bands
/

&PARAMETERS
Nk1 = 41            ! number k points  odd number would be better
Nk2 = 41           ! number k points  odd number would be better
/

The resutls are

_images/Bi2Se3_wanniercenter3D_Z2.png

(a) k1=0.0, z2=1; (b) k1=0.5, z2=0; (c) k2=0.0, z2=1; (d) k2=0.5, z2=0; (e) k3=0.0, z2=1; (f) k3=0.5, z2=0;

So the bulk Z2 topological number is (1, 000), which means a strongly topological insulator.

Surface state

The surface states are the correspondence to the non-trivial bulk topology. They are detectable from ARPES experiments. The calculated surface states of Bi2Se3 on (0001) surface are

_images/Bi2Se3_surfdos_l.png _images/Bi2Se3_arc_l.png

The settings in WT.in are

&CONTROL
SlabSS_calc           = T
SlabArc_calc          = T
/

&SYSTEM
SOC = 1                 ! soc
NumOccupied = 18        ! Number of occupied Wannier bands
E_FERMI = 4.4195        ! e-fermi
/

&PARAMETERS
Eta_Arc = 0.001     ! infinite small value, like brodening
E_arc = 0.0         ! energy for calculate Fermi Arc
OmegaMin = -0.6     ! energy interval
OmegaMax =  0.5     ! energy interval
OmegaNum = 401      ! omega number
Nk1 = 101           ! number k points  odd number would be better
Nk2 = 101           ! number k points  odd number would be better
/

SURFACE            ! See doc for details
 1  0  0
 0  1  0
 0  0  1

KPATH_SLAB
2        ! numker of k line for 2D case
K 0.33 0.67 G 0.0 0.0  ! k path for 2D case
G 0.0 0.0 M 0.5 0.5

KPLANE_SLAB
-0.1 -0.1      ! Original point for 2D k plane
 0.2  0.0      ! The first vector to define 2D k plane
 0.0  0.2      ! The second vector to define 2D k plane  for arc plots

Spin texture

Spin orbital coupling (SOC) is a very important to topological insulator. The spin texture of the surface states will form due to SOC. WannierTools can calculate spin texture like this

_images/Bi2Se3_spintext.png

by setting

&CONTROL
SlabSpintexture_calc  = F
/

&SYSTEM
SOC = 1                 ! soc
E_FERMI = 4.4195        ! e-fermi
/

&PARAMETERS
Eta_Arc = 0.001     ! infinite small value, like brodening
E_arc = 0.0         ! energy for calculate Fermi Arc
Nk1 = 101           ! number k points  odd number would be better
Nk2 = 101           ! number k points  odd number would be better
/

SURFACE            ! See doc for details
 1  0  0
 0  1  0
 0  0  1

KPLANE_SLAB
-0.1 -0.1      ! Original point for 2D k plane
 0.2  0.0      ! The first vector to define 2D k plane
 0.0  0.2      ! The second vector to define 2D k plane  for arc plots

Full settings in WT.in of Bi2Se3

&TB_FILE
Hrfile = 'wannier90_hr.dat'
/


&CONTROL
BulkBand_calc         = T
BulkFS_calc           = F
BulkGap_cube_calc     = F
BulkGap_plane_calc    = F
SlabBand_calc         = T
WireBand_calc         = F
SlabSS_calc           = T
SlabArc_calc          = T
SlabQPI_calc          = F
Z2_3D_calc            = T
Chern_3D_calc         = F
SlabSpintexture_calc  = F
Wanniercenter_calc    = F
BerryPhase_calc       = F
BerryCurvature_calc   = F
EffectiveMass_calc    = F
/

&SYSTEM
NSLAB = 10              ! for thin film system
NSLAB1= 4               ! nanowire system
NSLAB2= 4               ! nanowire system
NumOccupied = 18        ! NumOccupied
SOC = 1                 ! soc
E_FERMI = 4.4195        ! e-fermi
Bx= 0, By= 0, Bz= 0     ! Bx By Bz
surf_onsite= 0.0        ! surf_onsite
/

&PARAMETERS
Eta_Arc = 0.001     ! infinite small value, like brodening
E_arc = 0.0         ! energy for calculate Fermi Arc
OmegaNum = 401      ! omega number
OmegaMin = -0.6     ! energy interval
OmegaMax =  0.5     ! energy interval
Nk1 = 41            ! number k points  odd number would be better
Nk2 = 41           ! number k points  odd number would be better
Nk3 = 21           ! number k points  odd number would be better
NP = 1              ! number of principle layers
Gap_threshold = 1.0 ! threshold for GapCube output
/

LATTICE
Angstrom
-2.069  -3.583614  0.000000     ! crystal lattice information
 2.069  -3.583614  0.000000
 0.000   2.389075  9.546667

ATOM_POSITIONS
5                               ! number of atoms for projectors
Direct                          ! Direct or Cartisen coordinate
 Bi 0.3990    0.3990    0.6970
 Bi 0.6010    0.6010    0.3030
 Se 0     0     0.5
 Se 0.2060    0.2060    0.1180
 Se 0.7940    0.7940    0.8820

PROJECTORS
 3 3 3 3 3          ! number of projectors
Bi px py pz         ! projectors
Bi px py pz
Se px py pz
Se px py pz
Se px py pz

SURFACE            ! See doc for details
 1  0  0
 0  1  0
 0  0  1

KPATH_BULK            ! k point path
4              ! number of k line only for bulk band
G 0.00000 0.00000 0.0000 Z 0.00000 0.00000 0.5000
Z 0.00000 0.00000 0.5000 F 0.50000 0.50000 0.0000
F 0.50000 0.50000 0.0000 G 0.00000 0.00000 0.0000
G 0.00000 0.00000 0.0000 L 0.50000 0.00000 0.0000

KPATH_SLAB
2        ! numker of k line for 2D case
K 0.33 0.67 G 0.0 0.0  ! k path for 2D case
G 0.0 0.0 M 0.5 0.5

KPLANE_SLAB
-0.1 -0.1      ! Original point for 2D k plane
 0.2  0.0      ! The first vector to define 2D k plane
 0.0  0.2      ! The second vector to define 2D k plane  for arc plots

KPLANE_BULK
 0.00  0.00  0.50   ! Original point for 3D k plane  k3=0.5, bar{a}, along k1
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  0.50  0.00   ! The second vector to define 3d k space plane

!> The following 5 matrices are for backup using, will not affect the main input for WannierTools
 0.00  0.00  0.00   ! Original point for 3D k plane  k3=0.0, bar{a}, along k1
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  0.50  0.00   ! The second vector to define 3d k space plane

 0.00  0.50  0.00   ! Original point for 3D k plane  k2=0.5, bar{c}, along ka
 0.00  0.00  1.00   ! The first vector to define 3d k space plane
 0.50  0.00  0.00   ! The second vector to define 3d k space plane

 0.00  0.00  0.00   ! Original point for 3D k plane  k2=0, bar{c}, along ka
 0.00  0.00  1.00   ! The first vector to define 3d k space plane
 0.50  0.00  0.00   ! The second vector to define 3d k space plane

 0.50  0.00  0.00   ! Original point for 3D k plane  k1=0.5, bar{c}, along kb
 0.00  0.00  1.00   ! The first vector to define 3d k space plane
 0.00  0.50  0.00   ! The second vector to define 3d k space plane

 0.00  0.00  0.00   ! Original point for 3D k plane  k1=0, bar{c}, along kb
 0.00  0.00  1.00   ! The first vector to define 3d k space plane
 0.00  0.50  0.00   ! The second vector to define 3d k space plane



KCUBE_BULK
-0.50 -0.50 -0.50   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  1.00  0.00   ! The second vector to define 3d k space plane
 0.00  0.00  1.00   ! The third vector to define 3d k cube


EFFECTIVE_MASS      ! optional
2                   ! The i'th band to be calculated
0.01                ! k step in unit of (1/Angstrom)
0.0 0.0 0.0         ! k point where the effective mass calculated.


WANNIER_CENTRES     ! copy from wannier90.wout
Cartesian
 -0.000040  -1.194745   6.638646
  0.000038  -1.196699   6.640059
 -0.000032  -1.192363   6.640243
 -0.000086  -3.583414   2.908040
  0.000047  -3.581457   2.906587
 -0.000033  -3.585864   2.906443
 -0.000001   1.194527   4.773338
  0.000003   1.194538   4.773336
 -0.000037   1.194536   4.773327
  0.000006  -1.194384   1.130261
 -0.000018  -1.216986   1.140267
  0.000007  -1.172216   1.140684
  0.000011  -3.583770   8.416406
 -0.000002  -3.561169   8.406398
 -0.000007  -3.605960   8.405979
  0.000086  -1.194737   6.638626
 -0.000047  -1.196693   6.640080
  0.000033  -1.192286   6.640223
  0.000040  -3.583406   2.908021
 -0.000038  -3.581452   2.906608
  0.000032  -3.585788   2.906424
  0.000001   1.194548   4.773330
 -0.000003   1.194537   4.773332
  0.000037   1.194539   4.773340
 -0.000011  -1.194381   1.130260
  0.000002  -1.216981   1.140268
  0.000007  -1.172191   1.140687
 -0.000006  -3.583766   8.416405
  0.000018  -3.561165   8.406400
 -0.000007  -3.605935   8.405982

MoS2 (2D QSHE)

WannierTools also works fine with 2D materials. The way we handle it is just like what we simulated in the first principle calculations. A 2D material is just a layer structured 3D material with zero coupling along z direction. The settings of WannierTools for 2D materials are the same of 3D materials. However, you should only care about the properties happen in the kz=0 plane, since the properties are the same for different kz.

Monolayer square transition metal dichalcogenides (MoS2, MoSe2, MoTe2, WS2, WSe2, and WTe2) was predicted to be robust topological insulators (TIs) with Z2=1. As a good 2D TI, 1T’-MoS2 is taken as an example to test WannitrTolls.

Here is the primitive unit cell of 1T’-MoS2

_images/MoS2-1Tp-poscar.png

Band structure

Firstly, you need to study the electronic structure of MoS2 with first-principle software package, like VASP, Wien2k, Abinit, Quantum-espresso et al. In this tutorial, we select VASP. Here is the calculated band structure. Then Wannier90 is applied to construct MLWF tight binding (TB) model (see more details from http://www.wannier.org). Here we only tell you that the s, d orbitals of Mo and s, p orbitals of S are selected as the initial projectors for Wannier90. The band structure calculated from the MLWF-TB model is as follows

_images/MoS2-1Tp-bands.png

This band structure can be calculated directly from Wannier90. Also can be calculated from WannierTools. The settings in WT.in are

&CONTROL
BulkBand_calc         = T
/

&SYSTEM
SOC = 1                 ! soc
E_FERMI = -3.9151       ! e-fermi
/

&PARAMETERS
Nk1 = 101            ! number k points  odd number would be better
/

KPATH_BULK            ! k point path
4              ! number of k line only for bulk band
X 0.50000  0.00000  0.00000   G   0.00000  0.00000  0.00000
G 0.00000  0.00000  0.00000   Y   0.00000  0.50000  0.00000
Y 0.00000  0.50000  0.00000   M   0.50000  0.50000  0.00000
M 0.50000  0.50000  0.00000   G   0.00000  0.00000  0.00000

Z2 topological number

From the band structure above, it is clear that it is a insulator. This is also can be checked by calculating the density of state (DOS). In order to identify the topological properties, we have to calculate the Z2 topological number, which is valid for time-reversal invariant system with a continuous full gap in the Brilloin Zone. The Z2 topological number for 3D bulk system can be obtained from the calculation of the Wilson loop (Wannier charge center) for the six time-reversal invariant momentum plane. (a) k1=0.0, (b) k1=0.5; (c) k2=0.0; (d) k2=0.5; (e) k3=0.0, (f) k3=0.5. It can be done using WannierTools with setting in WT.in

&CONTROL
Z2_3D_calc            = T
/

&SYSTEM
SOC = 1                 ! soc
NumOccupied = 36        ! Number of occupied Wannier bands
/

&PARAMETERS
Nk1 = 101            ! number k points  odd number would be better
Nk2 = 41           ! number k points  odd number would be better
/

The resutls are

_images/MoS2_wanniercenter3D_Z2.png

(a) k1=0.0, z2=0; (b) k1=0.5, z2=0; (c) k2=0.0, z2=0; (d) k2=0.5, z2=0; (e) k3=0.0, z2=1; (f) k3=0.5, z2=1;

So the bulk Z2 topological number is (0, 001), which means a weak topological insulator in 3-dimension picture, while a strong TI in 2D picture. For a 2D material, you only need the topological index in figure (e).

Edge state

The edge states of a 2D material is the side surface of a 3D model. The calculated edge states of MoS2 on (100) surface is

_images/MoS2-surfdos_l.png

The settings in WT.in are

&CONTROL
SlabSS_calc           = T
/

&SYSTEM
SOC = 1                 ! soc
NumOccupied = 36        ! Number of occupied Wannier bands
E_FERMI = -3.9151       ! e-fermi
/

&PARAMETERS
Eta_Arc = 0.001     ! infinite small value, like brodening
E_arc =-0.05        ! energy for calculate Fermi Arc
OmegaMin = -0.8     ! energy interval
OmegaMax =  0.4     ! energy interval
OmegaNum = 401      ! omega number
Nk1 = 101           ! number k points  odd number would be better
Nk2 = 101           ! number k points  odd number would be better
Np  = 2             ! number k points  odd number would be better
/

MILLER_INDICES
1 0 0

!SURFACE            ! See doc for details
 0  1  0
 0  0  1
 1  0  0

KPATH_SLAB
2        ! numker of k line for 2D case
X  0.5  0.0 G  0.0  0.0  ! k path for 2D case
G  0.0  0.0 X  0.5  0.0

KPLANE_SLAB
-0.5 -0.5      ! Original point for 2D k plane
 1.0  0.0      ! The first vector to define 2D k plane
 0.0  1.0      ! The second vector to define 2D k plane  for arc plots

Full settings in WT.in of 1Tp-MoS2

&TB_FILE
Hrfile = 'wannier90_hr.dat'
Package = 'VASP'
/


!> bulk band structure calculation flag
&CONTROL
BulkBand_calc         = T
BulkFS_calc           = F
Z2_3D_calc            = T
DOS_calc              = F
BulkFS_plane_calc     = F
BulkGap_cube_calc     = F
BulkGap_plane_calc    = F
SlabBand_calc         = F
WireBand_calc         = F
SlabSS_calc           = T
SlabArc_calc          = T
SlabSpintexture_calc  = F
wanniercenter_calc    = F
BerryPhase_calc       = F
BerryCurvature_calc   = F
/

&SYSTEM
NSLAB = 20
NumOccupied = 36        ! NumOccupied
SOC = 1                 ! soc
E_FERMI =  -3.9151        ! e-fermi
surf_onsite= 0.0        ! surf_onsite
/

&PARAMETERS
Eta_Arc = 0.001     ! infinite small value, like brodening
E_arc = -0.05         ! energy for calculate Fermi Arc
OmegaNum = 401     ! omega number
OmegaMin = -0.8     ! energy interval
OmegaMax =  0.4     ! energy interval
Nk1 = 101          ! number k points
Nk2 = 101          ! number k points
Nk3 = 3            ! number k points
NP = 2              ! number of principle layers
Gap_threshold = 0.10 ! threshold for GapCube output
/

LATTICE
Angstrom
     3.1770280139589571    0.0000000000000000    0.0000000000000000
     0.0000000000000000    5.7281689431742455   -0.0157118470068534
     0.0000000000000000    0.3756910330601151   30.2151819975086902

ATOM_POSITIONS
6                               ! number of atoms for projectors
Direct                          ! Direct or Cartisen coordinate
  Mo  0.5000000049999969  0.4188543132266640  0.5873016275251595
  Mo -0.0000000000000000  0.0233088607917941  0.5925355564141651
  S   0.5000000049999969  0.1358785901303858  0.6473858970202739
  S   0.0000000000000000  0.6405161490437790  0.6337728762151337
  S  -0.0000000000000000  0.3062864083475208  0.5324524179435783
  S   0.5000000049999969  0.8016452854598629  0.5460646648816858

PROJECTORS
6 6 4 4 4 4        ! number of projectors
Mo s dxy dyz dxz dx2-y2 dz2         ! projectors
Mo s dxy dyz dxz dx2-y2 dz2         ! projectors
S  s px py pz
S  s px py pz
S  s px py pz
S  s px py pz

MILLER_INDEX        ! this is equal to the SURFACE card
1 0 0

!SURFACE            ! MoS2 conventional (010) surface
 0  1  0
 0  0  1
 1  0  0

KPATH_BULK            ! k point path
4              ! number of k line only for bulk band
  X 0.50000  0.00000  0.00000   G   0.00000  0.00000  0.00000
  G 0.00000  0.00000  0.00000   Y   0.00000  0.50000  0.00000
  Y 0.00000  0.50000  0.00000   M   0.50000  0.50000  0.00000
  M 0.50000  0.50000  0.00000   G   0.00000  0.00000  0.00000

KPATH_SLAB
2        ! numker of k line for 2D case
X  0.5  0.0 G  0.0  0.0  ! k path for 2D case
G  0.0  0.0 X  0.5  0.0

KPLANE_SLAB
-0.5 -0.5      ! Original point for 2D k plane
 1.0  0.0      ! The first vector to define 2D k plane
 0.0  1.0      ! The second vector to define 2D k plane  for arc plots

KPLANE_BULK
-0.50 -0.50  0.00   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  1.00  0.00   ! The second vector to define 3d k space plane

KCUBE_BULK
-0.50 -0.50 -0.50   ! Original point for 3D k plane
 1.00  0.00  0.00   ! The first vector to define 3d k space plane
 0.00  1.00  0.00   ! The second vector to define 3d k space plane
 0.00  0.00  1.00   ! The third vector to define 3d k cube


WANNIER_CENTRES
Cartesian
    1.582112  2.389848 17.807782
    1.588504  2.609305 17.734627
    1.588512  2.615066 17.729182
    1.588518  2.627199 17.745843
    1.588498  2.598550 17.729411
    1.588498  2.629729 17.732881
   -0.004616  0.781697 17.681791
   -0.000012  0.362382 17.901360
    0.000001  0.357923 17.918636
   -0.000009  0.350028 17.898957
   -0.000005  0.365927 17.908526
   -0.000007  0.366124 17.901329
    1.588504  1.034466 19.413821
    1.588523  1.032565 19.619308
    1.588472  1.012794 19.497202
    1.588484  1.034341 19.536688
   -0.000085  3.898045 19.004023
   -0.000043  3.932819 19.131844
   -0.000018  3.905334 19.041137
    0.000028  3.922253 19.122079
   -0.000005  1.945318 16.239885
   -0.000014  1.949702 16.018513
   -0.000042  1.987244 16.143671
   -0.000004  1.954899 16.130450
    1.588449  4.785448 16.618078
    1.588486  4.728185 16.486681
    1.588469  4.865486 16.580409
    1.588453  4.810723 16.489254
    1.595220  2.389977 17.807534
    1.588525  2.609305 17.734627
    1.588517  2.615065 17.729183
    1.588510  2.627201 17.745844
    1.588530  2.598543 17.729408
    1.588531  2.629735 17.732878
    0.004808  0.781415 17.681511
    0.000013  0.362387 17.901363
   -0.000001  0.357918 17.918638
    0.000009  0.350028 17.898959
    0.000005  0.365927 17.908525
    0.000007  0.366134 17.901324
    1.588524  1.034460 19.413819
    1.588506  1.032552 19.619299
    1.588559  1.012789 19.497215
    1.588545  1.034346 19.536661
    0.000087  3.898051 19.004022
    0.000044  3.932824 19.131846
    0.000018  3.905353 19.041145
   -0.000027  3.922253 19.122048
    0.000005  1.945317 16.239895
    0.000014  1.949708 16.018506
    0.000043  1.987240 16.143659
    0.000006  1.954899 16.130433
    1.588582  4.785446 16.618079
    1.588543  4.728170 16.486695
    1.588562  4.865497 16.580411
    1.588575  4.810739 16.489208

WTe2 (Type II Weyl semimetal)

to be continue

IrF4 (Nodal Chain metals)

to be continue

FeSi (Weyl point in Phonon system)

_images/wanniertools-FeSi-phonon.png

WannierTools’s citations upto March 6 2020

[1] Yichul Choi, John W. Villanova, and Kyungwha Park. “Zeeman-splitting-induced topological nodal structure and anomalous Hall conductivity in ZrTe5”. In: PHYSICAL REVIEW B 101.3 (2020). issn: 2469-9950. doi: {10.1103/PhysRevB. 101.035105}.

[2] Chaowei Hu, Kyle N. Gordon, Pengfei Liu, Jinyu Liu, Xiaoqing Zhou, Peipei Hao, Dushyant Narayan, Eve Emmanouilidou, Hongyi Sun, Yuntian Liu, Harlan Brawer, Arthur P. Ramirez, Lei Ding, Huibo Cao, Qihang Liu, Dan Dessau, and

Ni Ni. “A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling”. In: NATURE

COMMUNICATIONS 11.1 (2020). issn: 2041-1723. doi: {10.1038/s41467-019-13814-x}.

[3] Chenqiang Hua, Si Li, Zhu-An Xu, Yi Zheng, Shengyuan A. Yang, and Yunhao Lu. “Tunable Topological Energy Bands

in 2D Dialkali-Metal Monoxides”. In: ADVANCED SCIENCE 7.4 (2020). doi: {10.1002/advs.201901939}.

[4] Xingxing Jiang, Yexin Feng, Ke-Qiu Chen, and Li-Ming Tang. “The coexistence of ferroelectricity and topological phase

transition in monolayer alpha-In2Se3 under strain engineering”. In: JOURNAL OF PHYSICS-CONDENSED MATTER

32.10 (2020). issn: 0953-8984. doi: {10.1088/1361-648X/ab58f1}.

[5] Kyung-Hwan Jin, Han Woong Yeom, and Feng Liu. “Doping-induced topological phase transition in Bi: The role of

quantum electronic stress”. In: PHYSICAL REVIEW B 101.3 (2020). issn: 2469-9950. doi: {10.1103/PhysRevB.101.

035111}.

[6] Ping Li and Tian-Yi Cai. “Fully spin-polarized quadratic non-Dirac bands realized quantum anomalous Hall effect”. In:

PHYSICAL CHEMISTRY CHEMICAL PHYSICS 22.2 (2020), 549–555. issn: 1463-9076. doi: {10.1039/c9cp05132e}.

[7] Zhiwei Li, Yuee Xie, Po-Yao Chang, and Yuanping Chen. “Interlocking nodal chains and their examples in carbon

networks”. In: CARBON 157 (2020), 563–569. issn: 0008-6223. doi: {10.1016/j.carbon.2019.10.055}.

[8] Ming-Yang Liu, Long Gong, Qing-Yuan Chen, Wen-Zhong Li, Chao Cao, and Yao He. “Topological phase transition

and tunable electronic properties of hydrogenated bismuthene: from single-layer to double-layer”. In: JOURNAL OF

PHYSICS-CONDENSED MATTER 32.3 (2020). issn: 0953-8984. doi: {10.1088/1361-648X/ab4b1a}.

[9] Lukas Muechler, Andreas Topp, Raquel Queiroz, Maxim Krivenkov, Andrei Varykhalov, Jennifer Cano, Christian R. Ast,

and Leslie M. Schoop. “Modular Arithmetic with Nodal Lines: Drumhead Surface States in ZrSiTe”. In: PHYSICAL

REVIEW X 10.1 (2020). issn: 2160-3308. doi: {10.1103/PhysRevX.10.011026}.

[10] Chengwang Niu, Hao Wang, Ning Mao, Baibiao Huang, Yuriy Mokrousov, and Ying Dai. “Antiferromagnetic Topological

Insulator with Nonsymmorphic Protection in Two Dimensions”. In: PHYSICAL REVIEW LETTERS 124.6 (2020). issn:

0031-9007. doi: {10.1103/PhysRevLett.124.066401}.

[11] Shifei Qi, Ruiling Gao, Maozhi Chang, Yulei Han, and Zhenhua Qiao. “Pursuing the high-temperature quantum anomalous Hall effect in MnBi2Te4/Sb2Te3 heterostructures”. In: PHYSICAL REVIEW B 101.1 (2020). issn: 2469-9950. doi:

{10.1103/PhysRevB.101.014423}.

[12] Y. K. Song, G. W. Wang, S. C. Li, W. L. Liu, X. L. Lu, Z. T. Liu, Z. J. Li, J. S. Wen, Z. P. Yin, Z. H. Liu, and

    1. Shen. “Photoemission Spectroscopic Evidence for the Dirac Nodal Line in the Monoclinic Semimetal SrAs3”. In:

PHYSICAL REVIEW LETTERS 124.5 (2020). issn: 0031-9007. doi: {10.1103/PhysRevLett.124.056402}.

[13] Wenming Xue, Jin Li, Xiangyang Peng, Chaoyu He, Tao Ouyang, Chunxiao Zhang, Chao Tang, Zhenqing Li, Donglin Lu,

and Jianxin Zhong. “2D O-PTl monolayer: a robust large bandgap topological insulator”. In: JOURNAL OF PHYSICS

D-APPLIED PHYSICS 53.2 (2020). issn: 0022-3727. doi: {10.1088/1361-6463/ab4b88}.

[14] Minping Zhang and Guangtao Wang. “Topological properties of NaAuTe in the hexagonal and Heusler structures”. In:

COMPUTATIONAL MATERIALS SCIENCE 171 (2020). issn: 0927-0256. doi: {10.1016/j.commatsci.2019.109206}.

[15] Run-Wu Zhang, Zeying Zhang, Cheng-Cheng Liu, and Yugui Yao. “Nodal Line Spin-Gapless Semimetals and HighQuality Candidate Materials”. In: PHYSICAL REVIEW LETTERS 124.1 (2020). issn: 0031-9007. doi: {10 . 1103 /

PhysRevLett.124.016402}.

[16] Irene Aguilera, Christoph Friedrich, and Stefan Bluegel. “Many-body corrected tight-binding Hamiltonians for an accurate quasiparticle description of topological insulators of the Bi2Se3 family”. In: PHYSICAL REVIEW B 100.15 (2019).

issn: 2469-9950. doi: {10.1103/PhysRevB.100.155147}.

[17] Unal Ozden Akkus, Erdem Balci, and Savas Berber. “Facile mechanism to induce topological transition in MXene”. In:

APPLIED SURFACE SCIENCE 473 (2019), 597–602. issn: 0169-4332. doi: {10.1016/j.apsusc.2018.12.203}.

[18] Niraj Aryal and Efstratios Manousakis. “Importance of electron correlations in understanding photoelectron spectroscopy

and Weyl character of MoTe2”. In: PHYSICAL REVIEW B 99.3 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.

035123}.

[19] Santu Baidya, Seungjin Kang, Choong H. Kim, and Jaejun Yu. “Chern insulator with a nearly flat band in the metalorganic- framework-based Kagome lattice”. In: SCIENTIFIC REPORTS 9 (2019). issn: 2045-2322. doi: {10 . 1038 /

s41598-019-50163-7}.

[20] C. K. Barman, Chiranjit Monda, Biswarup Pathak, and Aftab Alam. “Quaternary Hensler alloy: An ideal platform to

realize triple point fermions”. In: PHYSICAL REVIEW B 99.4 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.

045144}.

[21] Ranjan Kumar Batik, Ritesh Kumar, and Abhishek K. Singh. “Topological Phases in Hydrogenated Group 13 Monolayers”. In: JOURNAL OF PHYSICAL CHEMISTRY C 123.42 (2019), 25985–25990. issn: 1932-7447. doi: {10.1021/

acs.jpcc.9b07095}.

[22] David Boldrin, Ilias Samathrakis, Jan Zemen, Andrei Mihai, Bin Zou, Freya Johnson, Bryan D. Esser, David W. McComb,

Peter K. Petrov, Hongbin Zhang, and Lesley F. Cohen. “Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN

thin films”. In: PHYSICAL REVIEW MATERIALS 3.9 (2019). issn: 2475-9953. doi: {10.1103/PhysRevMaterials.3.

094409}.

[23] Sergio Bravo, Julian Correa, Leonor Chico, and Monica Pacheco. “Symmetry-protected metallic and topological phases

in penta-materials”. In: SCIENTIFIC REPORTS 9 (2019). issn: 2045-2322. doi: {10.1038/s41598-019-49187-w}.

[24] Cong Chen, Zhi-Ming Yu, Si Li, Ziyu Chen, Xian-Lei Sheng, and Shengyuan A. Yang. “Weyl-loop half-metal in Li3(FeO3)(2)”. In: PHYSICAL REVIEW B 99.7 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.075131}.

[25] Dong-Yun Chen, Yuelong Wu, Lei Jin, Yongkai Li, Xiaoxiong Wang, JunXi Duan, Junfeng Han, Xiang Li, Yun-Ze

Long, Xiaoming Zhang, Dong Chen, and Bing Teng. “Superconducting properties in a candidate topological nodal line

semimetal SnTaS2 with a centrosymmetric crystal structure”. In: PHYSICAL REVIEW B 100.6 (2019). issn: 2469-9950.

doi: {10.1103/PhysRevB.100.064516}.

[26] Liu-Cheng Chen, Pei-Qi Chen, Wei-Jian Li, Qian Zhang, Viktor V. Struzhkin, Alexander F. Goncharov, Zhifeng Ren,

and Xiao-Jia Chen. “Enhancement of thermoelectric performance across the topological phase transition in dense lead

selenide”. In: NATURE MATERIALS 18.12 (2019), 1321+. issn: 1476-1122. doi: {10.1038/s41563-019-0499-9}.

[27] Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, S. W. Jung, C. Cacho, H. Y.

Wang, Y. H. Mao, S. Liu, M. X. Wang, Y. F. Guo, Y. Xu, Z. K. Liu, L. X. Yang, and Y. L. Chen. “Topological Electronic

Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4¡bold¿ ¡/bold¿”. In:

PHYSICAL REVIEW X 9.4 (2019). issn: 2160-3308. doi: {10.1103/PhysRevX.9.041040}.

[28] Kama Choudhary, Kevin F. Garrity, and Francesca Tavazza. “High-throughput Discovery of Topologically Non-trivial

Materials using Spin-orbit Spillage”. In: SCIENTIFIC REPORTS 9 (2019). issn: 2045-2322. doi: {10.1038/s41598019-45028-y}.

[29] Sugata Chowdhury, Kevin F. Garrity, and Francesca Tavazza. “Prediction of Weyl semimetal and antiferromagnetic

topological insulator phases in Bi2MnSe4”. In: NPJ COMPUTATIONAL MATERIALS 5 (2019). issn: 2057-3960. doi:

{10.1038/s41524-019-0168-1}.

[30] Xue-Juan Dong, Jing-Yang You, Bo Gu, and Gang Su. “Strain-Induced Room-Temperature Ferromagnetic Semiconductors with Large Anomalous Hall Conductivity in Two-Dimensional Cr2Ge2Se6”. In: PHYSICAL REVIEW APPLIED

12.1 (2019). issn: 2331-7019. doi: {10.1103/PhysRevApplied.12.014020}.

[31] Lin Du, Donglin Lu, Jie Li, Ke Yang, Lingling Yang, Bin Huang, Jun Yi, Qian Yi, Lili Miao, Xiang Qi, Chujun Zhao,

Jianxin Zhong, and Shuangchun Wen. “Broadband Nonlinear Optical Response of Single-Crystalline Bismuth Thin

Film”. In: ACS APPLIED MATERIALS & INTERFACES 11.39 (2019), 35863–35870. issn: 1944-8244. doi: {10.1021/

acsami.9b10354}.

[32] Ali Ebrahimian, Mehrdad Dadsetani, and Reza Asgari. “Dirac fermions and superconductivity in the two-dimensional

transition metals MOH(M=Zr, Hf)”. In: PHYSICAL REVIEW B 100.24 (2019). issn: 2469-9950. doi: {10 . 1103 /

PhysRevB.100.245120}.

[33] Zhongheng Fu, Zhaorui Liu, Dominik Legut, Timothy C. Germann, Chen Si, Shiyu Du, Joseph S. Francisco, and Ruifeng

Zhang. “Designing Flexible Quantum Spin Hall Insulators through 2D Ordered Hybrid Transition-Metal Carbides”. In:

JOURNAL OF PHYSICAL CHEMISTRY C 123.33 (2019), 20664–20674. issn: 1932-7447. doi: {10.1021/acs.jpcc.

9b05962}.

[34] Heng Gao, Jornw. F. Venderbos, Youngkuk Kim, and Andrew M. Rappe. “Topological Semimetals from First Principles”.

In: ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 49. Ed. by Clarke, DR. Vol. 49. Annual Review of Materials

Research. 2019, 153–183. isbn: 978-0-8243-1749-2. doi: {10.1146/annurev-matsci-070218-010049}.

[35] Yan Gao, Weikang Wu, Peng-Jie Guo, Chengyong Zhong, Shengyuan A. Yang, Kai Liu, and Zhong-Yi Lu. “Hexagonal

supertetrahedral boron: A topological metal with multiple spin-orbit-free emergent fermions”. In: PHYSICAL REVIEW

MATERIALS 3.4 (2019). issn: 2475-9953. doi: {10.1103/PhysRevMaterials.3.044202}.

[36] Barun Ghosh, Sougata Mardanya, Bahadur Singh, Xiaoting Zhou, Baokai Wang, Tay-Rong Chang, Chenliang Su, Hsin

Lin, Amit Agarwal, and Arun Bansil. “Saddle-point Van Hove singularity and dual topological state in Pt2HgSe3”. In:

PHYSICAL REVIEW B 100.23 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.235101}.

[37] Barun Ghosh, Debashis Mondal, Chia-Nung Kuo, Chin Shan Lue, Jayita Nayak, Jun Fujii, Ivana Vobornik, Antonio

Politano, and Amit Agarwal. “Observation of bulk states and spin-polarized topological surface states in transition

metal dichalcogenide Dirac semimetal candidate NiTe2”. In: PHYSICAL REVIEW B 100.19 (2019). issn: 2469-9950.

doi: {10.1103/PhysRevB.100.195134}.

[38] Xiamin Hao, Fangxue Luo, Shuwei Zhai, Qingling Meng, Jinge Wu, Ling Zhang, Tianzhao Li, Yizhen Jia, and Miao Zhou.

“Strain-engineered electronic and topological properties of bismuthene on SiC(0001) substrate”. In: NANO FUTURES

3.4 (2019). doi: {10.1088/2399-1984/ab5f97}.

[39] Yu-Jie Hao, Pengfei Liu, Yue Feng, Xiao-Ming Ma, Eike F. Schwier, Masashi Arita, Shiv Kumar, Chaowei Hu, Rui’e

Lu, Meng Zeng, Yuan Wang, Zhanyang Hao, Hongyi Sun, Ke Zhang, Jiawei Mei, Ni Ni, Liusuo Wu, Kenya Shimada,

Chaoyu Chen, Qihang Liu, and Chang Liu. “Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator

MnBi2Te4¡bold¿ ¡/bold¿”. In: PHYSICAL REVIEW X 9.4 (2019). issn: 2160-3308. doi: {10.1103/PhysRevX.9.041038}.

[40] Xin-Ling He, Xi Shao, Tong Chen, Yu-Ke Tai, Xiao-Ji Weng, Qun Chen, Xiao Dong, Guoying Gao, Jian Sun, Xiang-Feng

Zhou, Yongjun Tian, and Hui-Tian Wang. “Predicting three-dimensional icosahedron-based boron B-60”. In: PHYSICAL

REVIEW B 99.18 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.184111}.

[41] Huanzhi Hu, Zhibin Shi, Peng Wang, Weiping Zhou, Tai-Chang Chiang, and Xiaoxiong Wang. “Transformation of the

Topological Phase and the Edge Modes of Double-Bilayer Bismuthene with Inter-Bilayer Spacing”. In: CRYSTALS 9.5

(2019). issn: 2073-4352. doi: {10.3390/cryst9050266}.

[42] F. F. Huang, C. Y. He, Z. S. Ma, and L. Z. Sunk. “Topological nodal lines in three-dimensional single wall carbon

nanotube network”. In: COMPUTATIONAL MATERIALS SCIENCE 169 (2019). issn: 0927-0256. doi: {10.1016/j.

commatsci.2019.109123}.

[43] Takeshi Inoshita, Motoaki Hirayama, Noriaki Hamada, Hideo Hosono, and Shuichi Murakami. “Topological semimetal

phases manifested in transition metal dichalcogenides intercalated with 3d metals”. In: PHYSICAL REVIEW B 100.12

(2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.121112}.

[44] Hyo-Sun Jin, Young-Joon Song, Warren E. Pickett, and Kwan-Woo Lee. “Noncentrosymmetric compensated half-metal

hosting pure spin Weyl nodes, triple nodal points, nodal loops, and nexus fermions”. In: PHYSICAL REVIEW MATERIALS 3.2 (2019). issn: 2475-9953. doi: {10.1103/PhysRevMaterials.3.021201}.

[45] Kyung-Hwan Jin, Huaqing Huang, Jia-Wei Mei, Zheng Liu, Lih-King Lim, and Feng Liu. “Topological superconducting

phase in high-T-c superconductor MgB2 with Dirac-nodal-line fermions”. In: NPJ COMPUTATIONAL MATERIALS

5 (2019). doi: {10.1038/s41524-019-0191-2}.

[46] L. Jin, X. M. Zhang, X. F. Dai, L. Y. Wang, H. Y. Liu, and G. D. Liu. “Screening topological materials with a

CsCl-type structure in crystallographic databases”. In: IUCRJ 6.4 (2019), 688–694. issn: 2052-2525. doi: {10.1107/

S2052252519007383}.

[47] Lei Jin, Xiaoming Zhang, Tingli He, Weizhen Meng, Xuefang Dai, and Guodong Liu. “Topological nodal line state in

superconducting NaAlSi compound”. In: JOURNAL OF MATERIALS CHEMISTRY C 7.34 (2019), 10694–10699. issn:

2050-7526. doi: {10.1039/c9tc03464a}.

[48] Chang-Jong Kang, Dong-Choon Ryu, Junwon Kim, Kyoo Kim, J-S Kang, J. D. Denlinger, G. Kotliar, and B. Min I.

“Multiple topological Dirac cones in a mixed-valent Kondo semimetal: g-SmS”. In: PHYSICAL REVIEW MATERIALS

3.8 (2019). issn: 2475-9953. doi: {10.1103/PhysRevMaterials.3.081201}.

[49] Bramhachari Khamari and B. R. K. Nanda. “Shifting of Fermi level and realization of topological insulating phase in

the oxyfluoride BaBiO2F”. In: MATERIALS RESEARCH EXPRESS 6.6 (2019). issn: 2053-1591. doi: {10.1088/20531591/ab0b13}.

[50] Junwon Kim, Dong-Choon Ryu, Chang-Jong Kang, Kyoo Kim, Hongchul Choi, T-S Nam, and B. Min I. “Topological

phase transition in the archetypal f-electron correlated system of cerium”. In: PHYSICAL REVIEW B 100.19 (2019).

issn: 2469-9950. doi: {10.1103/PhysRevB.100.195138}.

[51] Minjin Kim, Jihwan Kim, In-Ho Lee, Woo Hyun Han, Yun Chang Park, Woo Youn Kim, Bongsoo Kim, and Junho

Suh. “Quantum transport properties of single-crystalline Ag2Se0.5Te0.5 nanowires as a new topological material”. In:

NANOSCALE 11.12 (2019), 5171–5179. issn: 2040-3364. doi: {10.1039/c9nr00288j}.

[52] Okan Koeksal and Rossitza Pentcheva. “Chern and Z(2) topological insulating phases in perovskite-derived 4d and 5d

oxide buckled honeycomb lattices”. In: SCIENTIFIC REPORTS 9 (2019). issn: 2045-2322. doi: {10.1038/s41598-01953125-1}.

[53] Jiaheng Li, Yang Li, Shiqiao Du, Zun Wang, Bing-Lin Gu, Shou-Cheng Zhang, Ke He, Wenhui Duan, and Yong Xu. “Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials”. In: SCIENCE ADVANCES

5.6 (2019). issn: 2375-2548. doi: {10.1126/sciadv.aaw5685}.

[54] Jiaheng Li, Chong Wang, Zetao Zhang, Bing-Lin Gu, Wenhui Duan, and Yong Xu. “Magnetically controllable topological

quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4”. In: PHYSICAL REVIEW B 100.12

(2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.121103}.

[55] Ping Li. “Prediction of intrinsic two dimensional ferromagnetism realized quantum anomalous Hall effect”. In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS 21.12 (2019), 6712–6717. issn: 1463-9076. doi: {10.1039/c8cp07781a}.

[56] Ping Li. “Stanene on a SiC(0001) surface: a candidate for realizing quantum anomalous Hall effect”. In: PHYSICAL

CHEMISTRY CHEMICAL PHYSICS 21.21 (2019), 11150–11157. issn: 1463-9076. doi: {10.1039/c9cp01509d}.

[57] Xiaoyin Li, Jie Liu, Fancy Qian Wang, Qian Wang, and P. Jena. “Rational Design of Porous Nodal-Line Semimetallic

Carbon for K-Ion Battery Anode Materials”. In: JOURNAL OF PHYSICAL CHEMISTRY LETTERS 10.20 (2019),

6360–6367. issn: 1948-7185. doi: {10.1021/acs.jpclett.9b02484}.

[58] Y. M. Li, S. H. Chen, K. Hu, X. Y. Wen, P. Zhou, and L. Z. Sun. “Two dimensional topological insulators in bilayer BiB”.

In: COMPUTATIONAL MATERIALS SCIENCE 160 (2019), 82–85. issn: 0927-0256. doi: {10.1016/j.commatsci.

2018.12.060}.

[59] Yue Li, Jiayong Zhang, Bao Zhao, Yang Xue, and Zhongqin Yang. “Constructive coupling effect of topological states

and topological phase transitions in plumbene”. In: PHYSICAL REVIEW B 99.19 (2019). issn: 2469-9950. doi: {10.

1103/PhysRevB.99.195402}.

[60] Z. H. Li, W. Wang, P. Zhou, Z. S. Ma, and L. Z. Sun. “New type of hybrid nodal line semimetal in Be2Si”. In: NEW

JOURNAL OF PHYSICS 21 (2019). issn: 1367-2630. doi: {10.1088/1367-2630/ab0d95}.

[61] Jinling Lian, Lixian Yu, Qi-Feng Liang, Jian Zhou, Rui Yu, and Hongming Weng. “Multi-loop node line states in ternary

MgSrSi-type crystals”. In: NPJ COMPUTATIONAL MATERIALS 5 (2019). issn: 2057-3960. doi: {10.1038/s41524018-0147-y}.

[62] Liangliang Liu, Chongze Wang, Seho Yi, Dou Kyun Kim, Chul Hong Park, and Jun-Hyung Choi. “Theoretical prediction

of Weyl fermions in the paramagnetic electride Y2C”. In: PHYSICAL REVIEW B 99.22 (2019). issn: 2469-9950. doi:

{10.1103/PhysRevB.99.220401}.

[63] Liangliang Liu, Chongze Wang, Seho Yi, Kun Woo Kim, Jaeyong Kim, and Jun-Hyung Cho. “Microscopic mechanism of

room-temperature superconductivity in compressed LaH10”. In: PHYSICAL REVIEW B 99.14 (2019). issn: 2469-9950.

doi: {10.1103/PhysRevB.99.140501}.

[64] Ming-Yang Liu, Qing-Yuan Chen, Chao Cao, and Yao He. “Topologically nontrivial phase and tunable Rashba effect in

half-oxidized bismuthene”. In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS 21.6 (2019), 2899–2909. issn: 14639076. doi: {10.1039/c8cp06391e}.

[65] Qing-Bo Liu, Hua-Hua Fu, Gang Xu, Rui Yu, and Ruqian Wu. “Categories of Phononic Topological Weyl Open Nodal

Lines and a Potential Material Candidate: Rb2Sn2O3”. In: JOURNAL OF PHYSICAL CHEMISTRY LETTERS 10.14

(2019), 4045–4050. issn: 1948-7185. doi: {10.1021/acs.jpclett.9b01159}.

[66] Zhifeng Liu, Wangxiang Feng, Hongli Xin, Yinlu Gao, Pengfei Liu, Yugui Yao, Hongming Weng, and Jijun Zhao. “Twodimensional spin-valley-coupled Dirac semimetals in functionalized SbAs monolayers”. In: MATERIALS HORIZONS

6.4 (2019), 781–787. issn: 2051-6347. doi: {10.1039/c8mh01588k}.

[67] Qing Lu, Yi-Ming Wen, Zhao-Yi Zeng, Xiang-Rong Chen, and Qi-Feng Chen. “Oxygen-functionalized TlTe buckled

honeycomb from first-principles study”. In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS 21.10 (2019), 5689–5694.

issn: 1463-9076. doi: {10.1039/c8cp07246a}.

[68] B. Q. Lv, Z-L Feng, J-Z Zhao, Noah F. Q. Yuan, A. Zong, K. E. Luo, R. Yu, Y-B Huang, V. N. Strocov, A. Chikina,

    1. Soluyanov, N. Gedik, Y-G Shi, T. Qian, and H. Ding. “Observation of multiple types of topological fermions in

PdBiSe”. In: PHYSICAL REVIEW B 99.24 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.241104}.

[69] Stephanie A. Mack, Sinead M. Griffin, and Jeffrey B. Neaton. “Emergence of topological electronic phases in elemental

lithium under pressure”. In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED

STATES OF AMERICA 116.19 (2019), 9197–9201. issn: 0027-8424. doi: {10.1073/pnas.1821533116}.

[70] Ning Mao, Xiangting Hu, Chengwang Niu, Baibiao Huang, and Ying Dai. “Dual topological insulator and insulatorsemimetal transition in mirror-symmetric honeycomb materials”. In: PHYSICAL REVIEW B 100.20 (2019). issn: 24699950. doi: {10.1103/PhysRevB.100.205116}.

[71] Sougata Mardanya, Bahadur Singh, Shin-Ming Huang, Tay-Rong Chang, Chenliang Su, Hsin Lin, Amit Agarwal, and

Arun Bansil. “Prediction of threefold fermions in a nearly ideal Dirac semimetal BaAgAs”. In: PHYSICAL REVIEW

MATERIALS 3.7 (2019). issn: 2475-9953. doi: {10.1103/PhysRevMaterials.3.071201}.

[72] Lijun Meng, Jiafang Wu, Yizhi Li, Lingling Zhao, and Jianxin Zhong. “Weyl semimetal phase in the noncentrosymmetric

superlattice W2XY (X, Y = S, Se, Te, X not equal Y)”. In: PHYSICAL REVIEW B 100.15 (2019). issn: 2469-9950.

doi: {10.1103/PhysRevB.100.155151}.

[73] Lijun Meng, Jiafang Wu, Yizhi Li, and Jianxin Zhong. “Dirac-Weyl semimetal phase in noncentrosymmetric transition

metal monochalcogenides MoTe and WTe”. In: JOURNAL OF MATERIALS CHEMISTRY C 7.39 (2019), 12151–12159.

issn: 2050-7526. doi: {10.1039/c9tc03339d}.

[74] Lijun Meng, Jiafang Wu, Jianxin Zhong, and Rudolf A. Roemer. “A type of robust superlattice type-I Weyl semimetal

with four Weyl nodes”. In: NANOSCALE 11.39 (2019), 18358–18366. issn: 2040-3364. doi: {10.1039/c9nr04551a}.

[75] Chiranjit Mondal, C. K. Barman, Aftab Alam, and Biswarup Pathak. “Broken symmetry driven phase transitions from

a topological semimetal to a gapped topological phase in SrAgAs”. In: PHYSICAL REVIEW B 99.20 (2019). issn:

2469-9950. doi: {10.1103/PhysRevB.99.205112}.

[76] Chiranjit Mondal, C. K. Barman, Sourabh Kumar, Aftab Alam, and Biswarup Pathak. “Emergence of Topological

insulator and Nodal line semi-metal states in XX ‘ Bi (X = Na, K, Rb, Cs; X ‘ = Ca, Sr)”. In: SCIENTIFIC REPORTS

9 (2019). issn: 2045-2322. doi: {10.1038/s41598-018-36869-0}.

[77] Chiranjit Mondal, Chanchal K. Barman, Biswarup Pathak, and Aftab Alam. “Type-II Dirac states in full Heusler

compounds X InPd2 (X = Ti, Zr, and Hf)”. In: PHYSICAL REVIEW B 100.24 (2019). issn: 2469-9950. doi: {10.1103/

PhysRevB.100.245151}.

[78] Lukas Muechler, Zurab Guguchia, Jean-Christophe Orain, Juergen Nuss, Leslie M. Schoop, Ronny Thomale, and Fabian

  1. von Rohr. “Superconducting order parameter of the nodal-line semimetal NaAlSi”. In: APL MATERIALS 7.12 (2019).

issn: 2166-532X. doi: {10.1063/1.5124242}.

[79] Joshua Mutch, Wei-Chih Chen, Preston Went, Tiema Qian, Ilham Zaky Wilson, Anton Andreev, Cheng-Chien Chen,

and Jiun-Haw Chu. “Evidence for a strain-tuned topological phase transition in ZrTe5”. In: SCIENCE ADVANCES 5.8

(2019). issn: 2375-2548. doi: {10.1126/sciadv.aav9771}.

[80] Simin Nie, Hongming Weng, and Fritz B. Prinz. “Topological nodal-line semimetals in ferromagnetic rare-earth-metal

monohalides”. In: PHYSICAL REVIEW B 99.3 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.035125}.

[81] Chengwang Niu, Ning Mao, Xiangting Hu, Baibiao Huang, and Ying Dai. “Quantum anomalous Hall effect and gatecontrollable topological phase transition in layered EuCd2As2”. In: PHYSICAL REVIEW B 99.23 (2019). issn: 24699950. doi: {10.1103/PhysRevB.99.235119}.

[82] M. Novak, S. N. Zhang, F. Orbanic, N. Biliskov, G. Eguchi, S. Paschen, A. Kimura, X. X. Wang, T. Osada, K. Uchida,

  1. Sato, Q. S. Wu, O. Yazyev V, and I Kokanovic. “Highly anisotropic interlayer magnetoresitance in ZrSiS nodal-line

Dirac semimetal”. In: PHYSICAL REVIEW B 100.8 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.085137}.

[83] Dominik Ohmer, Gao Qiang, Ingo Opahle, Harish K. Singh, and Hongbin Zhang. “High-throughput design of 211-M(2)AX

compounds”. In: PHYSICAL REVIEW MATERIALS 3.5 (2019). issn: 2475-9953. doi: {10.1103/PhysRevMaterials.

3.053803}.

[84] Liying Ouyang, Ge Hu, Can Qi, and Jun Hu. “Alloying-induced topological transition in 2D transition-metal dichalcogenide semiconductors”. In: APPLIED PHYSICS EXPRESS 12.4 (2019). issn: 1882-0778. doi: {10.7567/1882-0786/

ab03fe}.

[85] Bo Peng, Ivona Bravic, Judith L. MacManus-Driscoll, and Bartomeu Monserrat. “Topological semimetallic phase in PbO2

promoted by temperature”. In: PHYSICAL REVIEW B 100.16 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.

161101}.

[86] Qiong Peng, Jian Zhou, Chen Si, and Zhimei Sun. “Flexible quantum spin Hall insulator in O-functionalized GaSe

monolayer”. In: JOURNAL OF ALLOYS AND COMPOUNDS 788 (2019), 1113–1118. issn: 0925-8388. doi: {10.1016/

j.jallcom.2019.03.017}.

[87] Anh Pham and P. Ganesh. “Quantum material topology via defect engineering”. In: PHYSICAL REVIEW B 100.24

(2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.241110}.

[88] Anh Pham, Frank Klose, and Sean Li. “Robust topological nodal lines in halide carbides”. In: PHYSICAL CHEMISTRY

CHEMICAL PHYSICS 21.36 (2019), 20262–20268. issn: 1463-9076. doi: {10.1039/c9cp04330f}.

[89] Dmitry A. Pshenay-Severin and Alexander T. Burkov. “Electronic Structure of B20 (FeSi-Type) Transition-Metal

Monosilicides”. In: MATERIALS 12.17 (2019). doi: {10.3390/ma12172710}.

[90] Yu Qie, Junyi Liu, Shuo Wang, Qiang Sun, and Puru Jena. “Tetragonal C-24: a topological nodal-surface semimetal

with potential as an anode material for sodium ion batteries”. In: JOURNAL OF MATERIALS CHEMISTRY A 7.10

(2019), 5733–5739. issn: 2050-7488. doi: {10.1039/c8ta11276b}.

[91] Majeed Ur Rehman, Xinlong Dong, Tao Hou, Zeyu Li, Shifei Qi, and Zhenhua Qiao. “Quantum anomalous Hall effect

by coupling heavy atomic layers with CrI3”. In: PHYSICAL REVIEW B 100.19 (2019). issn: 2469-9950. doi: {10.1103/

PhysRevB.100.195422}.

[92] Fanfan Shang and Guangtao Wang. “Topological properties of the intermetallic compounds Sc-TM(TM = Cd, Ag, Cu,

Hg, Au)”. In: COMPUTATIONAL MATERIALS SCIENCE 160 (2019), 275–278. issn: 0927-0256. doi: {10.1016/j.

commatsci.2018.12.047}.

[93] Dexi Shao, Huaiqiang Wang, Tong Chen, Pengchao Lu, Qinyan Gu, Li Sheng, Dingyu Xing, and Jian Sun. “Composite

topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2”. In: NPJ COMPUTATIONAL MATERIALS 5 (2019). issn: 2057-3960. doi: {10.1038/s41524-019-0190-3}.

[94] Xian-Lei Sheng, Cong Chen, Huiying Liu, Ziyu Chen, Zhi-Ming Yu, Y. X. Zhao, and Shengyuan A. Yang. “TwoDimensional Second-Order Topological Insulator in Graphdiyne”. In: PHYSICAL REVIEW LETTERS 123.25 (2019).

issn: 0031-9007. doi: {10.1103/PhysRevLett.123.256402}.

[95] Xianbiao Shi, Li Chen, Peng He, Guangtao Wang, Gongping Zheng, Xin Liu, and Weiwei Zhao. “Dirac fermions in

the layered titanium-based oxypnictide superconductor BaTi2Bi2O”. In: PHYSICAL REVIEW B 99.15 (2019). issn:

2469-9950. doi: {10.1103/PhysRevB.99.155155}.

[96] Antik Sihi and Sudhir K. Pandey. “Studying The Topological Properties Of Half-Heusler NaAuS Compound”. In:

DAE SOLID STATE PHYSICS SYMPOSIUM 2018. Ed. by Biswas, A and Sharma, VK and Yusuf, SM. Vol. 2115.

AIP Conference Proceedings. 63rd DAE Solid State Physics Symposium (DAE-SSPS), Guru Jambheshwar Univ Sci &

Technol, Hisar, INDIA, DEC 18-22, 2018. Dept Atom Energy; Bhabha Atom Res Ctr; Govt India, Dept Atom Energy,

Board Res Nucl Sci. 2019. isbn: 978-0-7354-1851-6. doi: {10.1063/1.5113185}.

[97] Orlando J. Silveira, Luiz C. de Carvalho, Horacio W. L. Alves, and Helio Chacham. “Interplay between magnetic,

metal/insulator and topological phases in Hg1-xMnxTe alloys: prediction of a ferromagnetic Weyl semimetal at x=0.25”.

In: JOURNAL OF PHYSICS-CONDENSED MATTER 31.43 (2019). issn: 0953-8984. doi: {10 . 1088 / 1361 - 648X /

ab3270}.

[98] Sobhit Singh, Zeila Zanolli, Maximilian Amsler, Brahim Belhadji, Jorge O. Sofo, Matthieu J. Verstraete, and Aldo H.

Romero. “Low-Energy Phases of Bi Monolayer Predicted by Structure Search in Two Dimensions”. In: JOURNAL OF

PHYSICAL CHEMISTRY LETTERS 10.23 (2019), 7324–7332. issn: 1948-7185. doi: {10.1021/acs.jpclett.9b03043}.

[99] Lingling Song, Lizhi Zhang, Yurou Guan, Jianchen Lu, Cuixia Yan, and Jinming Cai. “Graphene-like Be3X2 (X = C,

Si, Ge, Sn): A new family of two-dimensional topological insulators”. In: CHINESE PHYSICS B 28.3 (2019). issn:

1674-1056. doi: {10.1088/1674-1056/28/3/037101}.

[100] Hongyi Sun, Bowen Xia, Zhongjia Chen, Yingjie Zhang, Pengfei Liu, Qiushi Yao, Hong Tang, Yujun Zhao, Hu Xu, and

Qihang Liu. “Rational Design Principles of the Quantum Anomalous Hall Effect in Superlatticelike Magnetic Topological

Insulators”. In: PHYSICAL REVIEW LETTERS 123.9 (2019). issn: 0031-9007. doi: {10 . 1103 / PhysRevLett . 123 .

096401}.

[101] Jian-Peng Sun, Qing Ji, Yuan Li, and Zhigang Song. “Multiple fermions in MoP”. In: MODERN PHYSICS LETTERS

B 33.24 (2019). issn: 0217-9849. doi: {10.1142/S0217984919502932}.

[102] Qilong Sun and Nicholas Kioussis. “Intrinsic ferromagnetism and topological properties in two-dimensional rhenium

halides”. In: NANOSCALE 11.13 (2019), 6101–6107. issn: 2040-3364. doi: {10.1039/c9nr00315k}.

[103] S. M. L. Teicher, I. K. Svenningsson, L. M. Schoop, and R. Seshadri. “Weyl nodes and magnetostructural instability in

antiperovskite Mn3ZnC”. In: APL MATERIALS 7.12 (2019). issn: 2166-532X. doi: {10.1063/1.5129689}.

[104] Samuel M. L. Teicher, Leo K. Lamontagne, Leslie M. Schoop, and Ram Seshadri. “Fermi-level Dirac crossings in 4d

and 5d cubic metal oxides: NaPd3O4 and NaPt3O4”. In: PHYSICAL REVIEW B 99.19 (2019). issn: 2469-9950. doi:

{10.1103/PhysRevB.99.195148}.

[105] Xin-Hai Tu, Peng-Fei Liu, and Bao-Tian Wang. “Topological and superconducting properties in YD3 (D = In, Sn,

Tl, Pb)”. In: PHYSICAL REVIEW MATERIALS 3.5 (2019). issn: 2475-9953. doi: {10.1103/PhysRevMaterials.3.

054202}.

[106] Baokai Wang, Bahadur Singh, Barun Ghosh, Wei-Chi Chiu, M. Mofazzel Hosen, Qitao Zhang, Li Ying, Madhab Neupane, Amit Agarwal, Hsin Lin, and Arun Bansil. “Topological crystalline insulator state with type-II Dirac fermions in

transition metal dipnictides”. In: PHYSICAL REVIEW B 100.20 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.

100.205118}.

[107] Jian-Tao Wang, Yuting Qian, Hongming Weng, Enge Wang, and Changfeng Chen. “Three-Dimensional Crystalline

Modification of Graphene in all-sp(2) Hexagonal Lattices with or without Topological Nodal Lines”. In: JOURNAL OF

PHYSICAL CHEMISTRY LETTERS 10.10 (2019), 251–2521. issn: 1948-7185. doi: {10.1021/acs.jpclett.9b00844}.

[108] Jian-Tao Wang, Hongming Weng, and Changfeng Chen. “Topological nodal line semimetals in graphene network structures”. In: ADVANCES IN PHYSICS-X 4.1 (2019). issn: 2374-6149. doi: {10.1080/23746149.2019.1625724}.

[109] Kai Wang, Yun Zhang, Wei Zhao, Ping Li, Jian-Wen Ding, Guo-Feng Xie, and Zhi-Xin Guo. “Topological Dirac states in

transition-metal monolayers on graphyne”. In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS 21.18 (2019), 9310–

  1. issn: 1463-9076. doi: {10.1039/c9cp01153f}.

[110] Lin-Lin Wang, Na Hyun Jo, Brinda Kuthanazhi, Yun Wu, Robert J. McQueeney, Adam Kaminski, and Paul C. Canfield.

“Single pair of Weyl fermions in the half-metallic semimetal EuCd2As2”. In: PHYSICAL REVIEW B 99.24 (2019). issn:

2469-9950. doi: {10.1103/PhysRevB.99.245147}.

[111] Yanli Wang and Yi Ding. “Large-Gap Quantum Spin Hall States in the Bilayer Hexagonal Structure of Rhenium and

Technetium Dinitrides: A First-Principles Study”. In: JOURNAL OF PHYSICAL CHEMISTRY C 123.41 (2019), 25524–

  1. issn: 1932-7447. doi: {10.1021/acs.jpcc.9b07735}.

[112] Yuan Wang, Junhai Ren, Jiaheng Li, Yujia Wang, Huining Peng, Pu Yu, Wenhui Duan, and Shuyun Zhou. “Evidence of

charge density wave with anisotropic gap in a monolayer VTe2 film”. In: PHYSICAL REVIEW B 100.24 (2019). issn:

2469-9950. doi: {10.1103/PhysRevB.100.241404}.

[113] Zhenwei Wang, Kaifa Luo, Jianzhou Zhao, and Rui Yu. “Large Fermi arc and robust Weyl semimetal phase in Ag2S”.

In: PHYSICAL REVIEW B 100.20 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.205117}.

[114] Zhenyu Wang, Tong Zhou, Tian Jiang, Hongyi Sun, Yunyi Zang, Yan Gong, Jianghua Zhang, Mingyu Tong, Xiangnan

Xie, Qihang Liu, Chaoyu Chen, Ke He, and Qi-Kun Xue. “Dimensional Crossover and Topological Nature of the Thin

Films of a Three-Dimensional Topological Insulator by Band Gap Engineering”. In: NANO LETTERS 19.7 (2019),

4627–4633. issn: 1530-6984. doi: {10.1021/acs.nanolett.9b01641}.

[115] Zhi Wang, Qihang Liu, Jun-Wei Luo, and Alex Zunger. “Digging for topological property in disordered alloys: the

emergence of Weyl semimetal phase and sequential band inversions in PbSe-SnSe alloys”. In: MATERIALS HORIZONS

6.10 (2019), 2124–2134. issn: 2051-6347. doi: {10.1039/c9mh00574a}.

[116] Sophie F. Weber, Sinead M. Griffin, and Jeffrey B. Neaton. “Topological semimetal features in the multiferroic hexagonal

manganites”. In: PHYSICAL REVIEW MATERIALS 3.6 (2019). issn: 2475-9953. doi: {10.1103/PhysRevMaterials.

3.064206}.

[117] Jiazhen Wu, Fucai Liu, Masato Sasase, Koichiro Ienaga, Yukiko Obata, Ryu Yukawa, Koji Horiba, Hiroshi Kumigashira,

Satoshi Okuma, Takeshi Inoshita, and Hideo Hosono. “Natural van der Waals heterostructural single crystals with both

magnetic and topological properties”. In: SCIENCE ADVANCES 5.11 (2019). issn: 2375-2548. doi: {10.1126/sciadv.

aax9989}.

[118] Juefei Wu, Zili Feng, Jinghui Wang, Qun Chen, Chi Ding, Tong Chen, Zhaopeng Guo, Jinsheng Wen, Youguo Shi, Dingyu

Xing, and Jian Sun. “Ground states of Au2Pb and pressure-enhanced superconductivity”. In: PHYSICAL REVIEW B

100.6 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.060103}.

[119] QuanSheng Wu, Alexey A. Soluyanov, and Tomas Bzdusek. “Non-Abelian band topology in noninteracting metals”. In:

SCIENCE 365.6459 (2019), 1273+. issn: 0036-8075. doi: {10.1126/science.aau8740}.

[120] Yun Wu, Na Hyun Jo, Lin-Lin Wang, Connor A. Schmidt, Kathryn M. Neilson, Benjamin Schrunk, Przemyslaw Swatek,

Andrew Eaton, S. L. Bud’ko, P. C. Canfield, and Adam Kaminski. “Fragility of Fermi arcs in Dirac semimetals”. In:

PHYSICAL REVIEW B 99.16 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.161113}.

[121] B. W. Xia, Y. J. Jin, J. Z. Zhao, Z. J. Chen, B. B. Zheng, Y. J. Zhao, R. Wang, and H. Xu. “Robust Twin Pairs

of Weyl Fermions in Ferromagnetic Oxides”. In: PHYSICAL REVIEW LETTERS 122.5 (2019). issn: 0031-9007. doi:

{10.1103/PhysRevLett.122.057205}.

[122] B. W. Xia, R. Wang, Z. J. Chen, Y. J. Zhao, and H. Xu. “Symmetry-Protected Ideal Type-II Weyl Phonons in CdTe”.

In: PHYSICAL REVIEW LETTERS 123.6 (2019). issn: 0031-9007. doi: {10.1103/PhysRevLett.123.065501}.

[123] Huinan Xia, Yang Li, Min Cai, Le Qin, Nianlong Zou, Lang Peng, Wenhui Duan, Yong Xu, Wenhao Zhang, and YingShuang Fu. “Dimensional Crossover and Topological Phase Transition in Dirac Semimetal Na3Bi Films”. In: ACS NANO

13.8 (2019), 9647–9654. issn: 1936-0851. doi: {10.1021/acsnano.9b04933}.

[124] Wen-Zhi Xiao, Gang Xiao, Qing-Yan Rong, and Ling-Ling Wang. “Oxygenation-Induced Two-Dimensional Topological

Insulators in Antimony Arsenide”. In: PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS 13.7 (2019). issn:

1862-6254. doi: {10.1002/pssr.201900146}.

[125] Yuee Xie, Jin Cai, Jinwoong Kim, Po-Yao Chang, and Yuanping Chen. “Hopf-chain networks evolved from triple points”.

In: PHYSICAL REVIEW B 99.16 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.165147}.

[126] C. Q. Xu, B. Li, M. R. van Delft, W. H. Jiao, W. Zhou, B. Qian, Nikolai D. Zhigadlo, Dong Qian, R. Sankar, N. E. Hussey,

and Xiaofeng Xu. “Extreme magnetoresistance and pressure-induced superconductivity in the topological semimetal

candidate YBi”. In: PHYSICAL REVIEW B 99.2 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.024110}.

[127] C. Q. Xu, B. Li, J. J. Feng, W. H. Jiao, Y. K. Li, S. W. Liu, Y. X. Zhou, R. Sankar, Nikolai D. Zhigadlo, H. B.

Wang, Z. D. Han, B. Qian, W. Ye, W. Zhou, T. Shiroka, Pabitra K. Biswas, Xiaofeng Xu, and Z. X. Shi. “Two-gap

superconductivity and topological surface states in TaOsSi”. In: PHYSICAL REVIEW B 100.13 (2019). issn: 2469-9950.

doi: {10.1103/PhysRevB.100.134503}.

[128] Chunyan Xu, Yanjie Wang, Ruilin Han, Haoran Tu, and Yu Yan. “Topological node line semimetal state in twodimensional tetragonal allotrope of Ge and Sn”. In: NEW JOURNAL OF PHYSICS 21 (2019). issn: 1367-2630. doi:

{10.1088/1367-2630/ab0457}.

[129] Sheng Xu, Liqin Zhou, Huan Wang, Xiao-Yan Wang, Yuan Su, Peng Cheng, Hongming Weng, and Tian-Long Xia.

“Quantum oscillations and electronic structure in the large-Chern number semimetal RhSn”. In: PHYSICAL REVIEW

B 100.24 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.245146}.

[130] Yuanfeng Xu, Yueqiang Gu, Tiantian Zhang, Chen Fang, Zhong Fang, Xian-Lei Sheng, and Hongming Weng. “Topological

nodal lines and hybrid Weyl nodes in YCoC2”. In: APL MATERIALS 7.10 (2019). issn: 2166-532X. doi: {10.1063/1.

5123222}.

[131] Yuanfeng Xu, Zhida Song, Zhijun Wang, Hongming Weng, and Xi Dai. “Higher-Order Topology of the Axion Insulator

EuIn2As2”. In: PHYSICAL REVIEW LETTERS 122.25 (2019). issn: 0031-9007. doi: {10.1103/PhysRevLett.122.

256402}.

[132] Siwei Xue, Tiantian Zhang, Changjiang Yi, Shuyuan Zhang, Xun Jia, Luiz H. Santos, Chen Fang, Youguo Shi, Xuetao

Zhu, and Jiandong Guo. “Electron-phonon coupling and Kohn anomaly due to floating two-dimensional electronic bands

on the surface of ZrSiS”. In: PHYSICAL REVIEW B 100.19 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.

195409}.

[133] X. Yi, W. Q. Li, Z. H. Li, P. Zhou, Z. S. Ma, and L. Z. Sun. “Topological dual double node-line semimetals NaAlSi(Ge)

and their potential as cathode material for sodium ion batteries”. In: JOURNAL OF MATERIALS CHEMISTRY C

7.48 (2019), 15375–15381. issn: 2050-7526. doi: {10.1039/c9tc04096j}.

[134] Xiao Yi, Wei Wang, Pan Zhou, Zheng Chun Zou, and Li Zhong Sun. “A New Family of Two-Dimensional Topological

Materials: CdX (X=F, Cl, Br, and I)”. In: PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS 13.5 (2019).

issn: 1862-6254. doi: {10.1002/pssr.201800466}.

[135] Yuefeng Yin, Michael S. Fuhrer, and Nikhil Medhekar V. “Selective control of surface spin current in topological pyritetype OsX2 (X = Se, Te) crystals”. In: NPJ QUANTUM MATERIALS 4 (2019). doi: {10.1038/s41535-019-0186-8}.

[136] Jing-Yang You, Cong Chen, Zhen Zhang, Xian-Lei Sheng, Shengyuan A. Yang, and Gang Su. “Two-dimensional Weyl

half-semimetal and tunable quantum anomalous Hall effect”. In: PHYSICAL REVIEW B 100.6 (2019). issn: 2469-9950.

doi: {10.1103/PhysRevB.100.064408}.

[137] Jing-Yang You, Xing-Yu Ma, Zhen Zhang, Kuan-Rong Hao, Qing-Bo Yan, Xian-Lei Sheng, and Gang Su. “Carboneyane:

A nodal line topological carbon with sp-sp(2) -sp(3) chemical bonds”. In: CARBON 152 (2019), 909–914. issn: 0008-6223.

doi: {10.1016/j.carbon.2019.06.060}.

[138] Jing-Yang You, Zhen Zhang, Bo Gu, and Gang Su. “Two-Dimensional Room-Temperature Ferromagnetic Semiconductors

with Quantum Anomalous Hall Effect”. In: PHYSICAL REVIEW APPLIED 12.2 (2019). issn: 2331-7019. doi: {10.

1103/PhysRevApplied.12.024063}.

[139] Qian-Qian Yuan, Liqin Zhou, Zhi-Cheng Rao, Shangjie Tian, Wei-Min Zhao, Cheng-Long Xue, Yixuan Liu, Tiantian

Zhang, Cen-Yao Tang, Zhi-Qiang Shi, Zhen-Yu Jia, Hongming Weng, Hong Ding, Yu-Jie Sun, Hechang Lei, and ShaoChun Li. “Quasiparticle interference evidence of the topological Fermi arc states in chiral fermionic semimetal CoSi”.

In: SCIENCE ADVANCES 5.12 (2019). issn: 2375-2548. doi: {10.1126/sciadv.aaw9485}.

[140] Bingwen Zhang, Yuliang Li, Cheng Zhang, and Jun Wang. “Two-dimensional ZrB2C2 with multiple tunable Dirac

states”. In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS 21.43 (2019), 24212–24217. issn: 1463-9076. doi: {10.

1039/c9cp04913d}.

[141] Huisheng Zhang, Yaohui Ning, Wenjia Yang, Ruiqiang Zhang, and Xiaohong Xu. “Topological phase transition induced

by p(x,y) and p(z) band inversion in a honeycomb lattice”. In: NANOSCALE 11.29 (2019), 13807–13814. issn: 2040-3364.

doi: {10.1039/c9nr04268g}.

[142] Jian-Feng Zhang, Peng-Jie Guo, Miao Gao, Kai Liu, and Zhong-Yi Lu. “beta-RhPb2: A topological superconductor

candidate”. In: PHYSICAL REVIEW B 99.4 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.045110}.

[143] Kai-Cheng Zhang, Yong-Feng Li, Yong Liu, and Yan Zhu. “Prediction of quantum anomalous Hall effect and giant

magnetic anisotropy in graphene with adsorbed Ir-based dimers”. In: JOURNAL OF APPLIED PHYSICS 125.19 (2019).

issn: 0021-8979. doi: {10.1063/1.5087927}.

[144] Kai-Cheng Zhang, Yong-Feng Li, Yong Liu, and Yan Zhu. “Realizing both giant magnetic anisotropy and quantum

anomalous Hall effect in graphene with adsorbed Te-Co dimer”. In: JOURNAL OF PHYSICS-CONDENSED MATTER

31.4 (2019). issn: 0953-8984. doi: {10.1088/1361-648X/aaf212}.

[145] ShengNan Zhang, QuanSheng Wu, Yi Liu, and Oleg Yazyev V. “Magnetoresistance from Fermi surface topology”. In:

PHYSICAL REVIEW B 99.3 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.035142}.

[146] T. T. Zhang, H. Miao, Q. Wang, J. Q. Lin, Y. Cao, G. Fabbris, A. H. Said, X. Liu, H. C. Lei, Z. Fang, H. M. Weng, and

      1. Dean. “Phononic Helical Nodal Lines with PT Protection in MoB2”. In: PHYSICAL REVIEW LETTERS

123.24 (2019). issn: 0031-9007. doi: {10.1103/PhysRevLett.123.245302}.

[147] Wei Zhang, Kaifa Luo, Zhendong Chen, Ziming Zhu, Rui Yu, Chen Fang, and Hongming Weng. “Topological phases in

pyrochlore thallium niobate Tl2Nb2O6-x”. In: NPJ COMPUTATIONAL MATERIALS 5 (2019). issn: 2057-3960. doi:

{10.1038/s41524-019-0245-5}.

[148] Wei-xi Zhang, Yong Li, Hui Jin, and Yan-chao She. “Two-dimensional transition-metal halide CoBr3 with spin-polarized

Dirac cone”. In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS 21.32 (2019), 17740–17745. issn: 1463-9076. doi:

{10.1039/c9cp03337h}.

[149] Pei Zhao, Yandong Ma, Hao Wang, Baibiao Huang, and Ying Dai. “Room-Temperature Quantum Anomalous Hall Effect

in Single-Layer CrP2S6”. In: JOURNAL OF PHYSICAL CHEMISTRY C 123.23 (2019), 14707–14711. issn: 1932-7447.

doi: {10.1021/acs.jpcc.9b04888}.

[150] Baobing Zheng, Bowen Xia, Rui Wang, Jinzhu Zhao, Zhongjia Chen, Yujun Zhao, and Hu Xu. “Tunable ferromagnetic

Weyl fermions from a hybrid nodal ring”. In: NPJ COMPUTATIONAL MATERIALS 5 (2019). issn: 2057-3960. doi:

{10.1038/s41524-019-0214-z}.

[151] Na Zhou, Pan Zhou, Jin Li, Chaoyu He, and Jianxin Zhong. “Si-Cmma: A silicon thin film with excellent stability and

Dirac nodal loop”. In: PHYSICAL REVIEW B 100.11 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.115425}.

[152] Tong Zhou, Xie-Gang Zhu, Mingyu Tong, Yun Zhang, Xue-Bing Luo, Xiangnan Xie, Wei Feng, Qiuyun Chen, Shiyong

Tan, Zhen-Yu Wang, Tian Jiang, Yuhua Tang, Xin-Chun Lai, and Xuejun Yang. “Experimental Evidence of Topological

Surface States in Mg3Bi2 Films Grown by Molecular Beam Epitaxy”. In: CHINESE PHYSICS LETTERS 36.11 (2019).

issn: 0256-307X. doi: {10.1088/0256-307X/36/11/117303}.

[153] Wei Zhou, Bin Li, Chun Qiang Xu, Maarten R. van Delft, Yu Ge Chen, Xiao Chen Fan, Bin Qian, Nigel E. Hussey, and

Xiaofeng Xu. “Nonsaturating Magnetoresistance and Nontrivial Band Topology of Type-II Weyl Semimetal NbIrTe4”.

In: ADVANCED ELECTRONIC MATERIALS 5.8 (2019). issn: 2199-160X. doi: {10.1002/aelm.201900250}.

[154] Yinong Zhou, Kyung-Hwan Jin, Huaqing Huang, Zhengfei Wang, and Feng Liu. “Weyl points created by a threedimensional flat band”. In: PHYSICAL REVIEW B 99.20 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.99.201105}.

[155] Shi-Yu Zhu, Yan Shao, En Wang, Lu Cao, Xuan-Yi Li, Zhong-Liu Liu, Chen Liu, Li-Wei Liu, Jia-Ou Wang, Kurash

Ibrahim, Jia-Tao Sun, Ye-Liang Wang, Shixuan Du, and Hong-Jun Gao. “Evidence of Topological Edge States in Buckled

Antimonene Monolayers”. In: NANO LETTERS 19.9 (2019), 6323–6329. issn: 1530-6984. doi: {10.1021/acs.nanolett.

9b02444}.

[156] Ziming Zhu, Zhi-Ming Yu, Weikang Wu, Lifa Zhang, Wei Zhang, Fan Zhang, and Shengyuan A. Yang. “Composite Dirac

semimetals”. In: PHYSICAL REVIEW B 100.16 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.161401}.

[157] Z. C. Zou, P. Zhou, Z. S. Ma, and L. Z. Sun. “Strong anisotropic nodal lines in the TiBe family”. In: PHYSICAL

CHEMISTRY CHEMICAL PHYSICS 21.16 (2019), 8402–8407. issn: 1463-9076. doi: {10.1039/c9cp00508k}.

[158] Xi Zuo, A. C. Dias, Fujun Liu, Li Han, Heming Li, Quan Gao, Xinxin Jiang, Dongmei Li, Bin Cui, Desheng Liu, and

Fanyao Qu. “Fully spin-polarized open and closed nodal lines in beta-borophene by magnetic proximity effect”. In:

PHYSICAL REVIEW B 100.11 (2019). issn: 2469-9950. doi: {10.1103/PhysRevB.100.115423}.

[159] Kyo-Hoon Ahn, Warren E. Pickett, and Kwan-Woo Lee. “Coexistence of triple nodal points, nodal links, and unusual

flat bands in intermetallic APd(3)(A = Pb, Sn)”. In: PHYSICAL REVIEW B 98.3 (2018). issn: 2469-9950. doi: {10.

1103/PhysRevB.98.035130}.

[160] Santu Baidya, Jaejun Yu, and Choong H. Kim. “Tunable magnetic topological insulating phases in monolayer CrI3”. In:

PHYSICAL REVIEW B 98.15 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.155148}.

[161] Erdem Balci, Unal Ozden Akkus, and Savas Berber. “Controlling topological electronic structure of multifunctional

MXene layer”. In: APPLIED PHYSICS LETTERS 113.8 (2018). issn: 0003-6951. doi: {10.1063/1.5042828}.

[162] Ranjan Kumar Barik, Ravindra Shinde, and Abhishek K. Singh. “Multiple triple-point fermions in Heusler compounds”.

In: JOURNAL OF PHYSICS-CONDENSED MATTER 30.37 (2018). issn: 0953-8984. doi: {10 . 1088 / 1361 - 648X /

aad8e1}.

[163] C. K. Barman, Chiranjit Mondal, Vijay Singh, Biswarup Pathak, and Aftab Alam. “Topologically nontrivial phase in

the hexagonal antiperovskites A(3)BiB (A=Ba,Sr; B=P,N)”. In: PHYSICAL REVIEW B 98.24 (2018). issn: 2469-9950.

doi: {10.1103/PhysRevB.98.245149}.

[164] D. Carvalho, N. A. Garcia-Martinez, J. L. Lado, and J. Fernandez-Rossier. “Real-space mapping of topological invariants

using artificial neural networks”. In: PHYSICAL REVIEW B 97.11 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.

97.115453}.

[165] James L. Collins, Anton Tadich, Weikang Wu, Lidia C. Gomes, Joao N. B. Rodrigues, Chang Liu, Jack Hellerstedt,

Hyejin Ryu, Shujie Tang, Sung-Kwan Mo, Shaffique Adam, Shengyuan A. Yang, Michael S. Fuhrer, and Mark T.

Edmonds. “Electric-field-tuned topological phase transition in ultrathin Na3Bi”. In: NATURE 564.7736 (2018), 390+.

issn: 0028-0836. doi: {10.1038/s41586-018-0788-5}.

[166] Jialiang Deng, Bingyu Xia, Xiaochuan Ma, Haoqi Chen, Huan Shan, Xiaofang Zhai, Bin Li, Aidi Zhao, Yong Xu,

Wenhui Duan, Shou-Cheng Zhang, Bing Wang, and J. G. Hou. “Epitaxial growth of ultraflat stanene with topological

band inversion”. In: NATURE MATERIALS 17.12 (2018), 1081+. issn: 1476-1122. doi: {10.1038/s41563-018-0203-5}.

[167] Vahid Derakhshan, Ali G. Moghaddam, and Davide Ceresoli. “Tailoring topological states in silicene using different

halogen-passivated Si(111) substrates”. In: PHYSICAL REVIEW B 97.12 (2018). issn: 2469-9950. doi: {10 . 1103 /

PhysRevB.97.125301}.

[168] Jianhua Du, Zhefeng Lou, ShengNan Zhang, Yuxing Zhou, Binjie Xu, Qin Chen, Yanqing Tang, Shuijin Chen, Huancheng

Chen, Qinqing Zhu, Hangdong Wang, Jinhu Yang, QuanSheng Wu, Oleg Yazyev V, and Minghu Fang. “Extremely large

magnetoresistance in the topologically trivial semimetal alpha-WP2”. In: PHYSICAL REVIEW B 97.24 (2018). issn:

2469-9950. doi: {10.1103/PhysRevB.97.245101}.

[169] Baojie Feng, Jin Cao, Meng Yang, Ya Feng, Shilong Wu, Botao Fu, Masashi Arita, Koji Miyamoto, Shaolong He, Kenya

Shimada, Youguo Shi, Taichi Okuda, and Yugui Yao. “Experimental observation of node-line-like surface states in LaBi”.

In: PHYSICAL REVIEW B 97.15 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.97.155153}.

[170] Xing Feng, Changming Yue, Zhida Song, QuanSheng Wu, and Bin Wen. “Topological Dirac nodal-net fermions in

AlB2-type TiB2 and ZrB2”. In: PHYSICAL REVIEW MATERIALS 2.1 (2018). issn: 2475-9953. doi: {10 . 1103 /

PhysRevMaterials.2.014202}.

[171] Botao Fu, Xiaotong Fan, Dashuai Ma, Cheng-Cheng Liu, and Yugui Yao. “Hourglasslike nodal net semimetal in

Ag2BiO3”. In: PHYSICAL REVIEW B 98.7 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.075146}.

[172] Heng Gao, Youngkuk Kim, Jorn W. F. Venderbos, C. L. Kane, E. J. Mele, Andrew M. Rappe, and Wei Ren. “DiracWeyl Semimetal: Coexistence of Dirac and Weyl Fermions in Polar Hexagonal ABC Crystals”. In: PHYSICAL REVIEW

LETTERS 121.10 (2018). issn: 0031-9007. doi: {10.1103/PhysRevLett.121.106404}.

[173] Yan Gao, Yuee Xie, Yuanping Chen, Jinxing Gu, and Zhongfang Chen. “Spindle nodal chain in three-dimensional

alpha ‘ boron”. In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20.36 (2018), 23500–23506. issn: 1463-9076. doi:

{10.1039/c8cp03874k}.

[174] Wen Fong Goh and Warren E. Pickett. “Coemergence of Dirac and multi-Weyl topological excitations in pnictide

antiperovskites”. In: PHYSICAL REVIEW B 98.12 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.125147}.

[175] Xu Gong, Ziyu Hu, Yan Huang, and Xiaohong Shao. “Hydrogenated and halogenated MB (M=As, Sb and Bi) monolayers:

Structural, electronic, optical and topological properties by first principles calculations”. In: JOURNAL OF ALLOYS

AND COMPOUNDS 767 (2018), 552–558. issn: 0925-8388. doi: {10.1016/j.jallcom.2018.06.358}.

[176] Xin-Ling He, Xiao Dong, QuanSheng Wu, Zhisheng Zhao, Qiang Zhu, Artem R. Oganov, Yongjun Tian, Dongli Yu, XiangFeng Zhou, and Hui-Tian Wang. “Predicting the ground-state structure of sodium boride”. In: PHYSICAL REVIEW B

97.10 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.97.100102}.

[177] Chia-Hsiu Hsu, Zhi-Quan Huang, Cho-Ying Lin, Gennevieve M. Macam, Yu-Zhang Huang, Deng-Sung Lin, Tai Chang

Chiang, Hsin Lin, Feng-Chuan Chuang, and Li Huang. “Growth of a predicted two-dimensional topological insulator

based on InBi-Si(111)-root 7 x root 7”. In: PHYSICAL REVIEW B 98.12 (2018). issn: 2469-9950. doi: {10 . 1103 /

PhysRevB.98.121404}.

[178] Chia-Hsiu Hsu, Zhi-Quan Huang, Gennevieve M. Macam, Feng-Chuan Chuang, and Li Huang. “Prediction of twodimensional organic topological insulator in metal-DCB lattices”. In: APPLIED PHYSICS LETTERS 113.23 (2018).

issn: 0003-6951. doi: {10.1063/1.5064610}.

[179] Huaqing Huang, Kyung-Hwan Jin, and Feng Liu. “Alloy Engineering of Topological Semimetal Phase Transition in

MgTa2-xNbxN3”. In: PHYSICAL REVIEW LETTERS 120.13 (2018). issn: 0031-9007. doi: {10.1103/PhysRevLett.

120.136403}.

[180] Huaqing Huang, Kyung-Hwan Jin, Shunhong Zhang, and Feng Liu. “Topological Electride Y2C”. In: NANO LETTERS

18.3 (2018), 1972–1977. issn: 1530-6984. doi: {10.1021/acs.nanolett.7b05386}.

[181] Yuri V. Ivanov, Alexander T. Burkov, and Dmitry A. Pshenay-Severin. “Thermoelectric Properties of Topological Insulators”. In: PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS 255.7 (2018). issn: 0370-1972. doi:

{10.1002/pssb.201800020}.

[182] Peiheng Jian, Lei Li, Zhaoliang Liao, Y. X. Zhao, and Zhicheng Zhong. “Spin Direction-Controlled Electronic Band

Structure in Two-Dimensional Ferromagnetic CrI3”. In: NANO LETTERS 18.6 (2018), 3844–3849. issn: 1530-6984.

doi: {10.1021/acs.nanolett.8b01125}.

[183] Y. J. Jin, Z. J. Chen, B. W. Xia, Y. J. Zhao, R. Wang, and H. Xu. “Ideal intersecting nodal-ring phonons in bcc C-8”.

In: PHYSICAL REVIEW B 98.22 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.220103}.

[184] Y. J. Jin, R. Wang, B. W. Xia, B. B. Zheng, and H. Xu. “Three-dimensional quantum anomalous Hall effect in ferromagnetic insulators”. In: PHYSICAL REVIEW B 98.8 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.081101}.

[185] Yuanjun Jin, Zhongjia Chen, Bowen Xia, Yujun Zhao, Rui Wang, and Hu Xu. “Large-gap quantum anomalous Hall

phase in hexagonal organometallic frameworks”. In: PHYSICAL REVIEW B 98.24 (2018). issn: 2469-9950. doi: {10.

1103/PhysRevB.98.245127}.

[186] Yuanjun Jin, Rui Wang, and Hu Xu. “Recipe for Dirac Phonon States with a Quantized Valley Berry Phase in TwoDimensional Hexagonal Lattices”. In: NANO LETTERS 18.12 (2018), 7755–7760. issn: 1530-6984. doi: {10.1021/acs.

nanolett.8b03492}.

[187] Rinkle Juneja, Ravindra Shinde, and Abhishek K. Singh. “Pressure-Induced Topological Phase Transitions in CdGeSb2

and CdSnSb2”. In: JOURNAL OF PHYSICAL CHEMISTRY LETTERS 9.9 (2018), 2202–2207. issn: 1948-7185. doi:

{10.1021/acs.jpclett.8b00646}.

[188] Myung-Chul Jung, Kwan-Woo Lee, and Warren E. Pickett. “Perovskite ThTaN3: A large-thermopower topological

crystalline insulator”. In: PHYSICAL REVIEW B 97.12 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.97.121104}.

[189] Ravi Kashikar, Bramhachari Khamari, and B. R. K. Nanda. “Second-neighbor electron hopping and pressure induced

topological quantum phase transition in insulating cubic perovskites”. In: PHYSICAL REVIEW MATERIALS 2.12

(2018). issn: 2475-9953. doi: {10.1103/PhysRevMaterials.2.124204}.

[190] Xiangru Kong, Linyang Li, Ortwin Leenaerts, Weiyang Wang, Xiong-Jun Liu, and Francois M. Peeters. “Quantum

anomalous Hall effect in a stable 1T-YN2 monolayer with a large nontrivial bandgap and a high Chern number”. In:

NANOSCALE 10.17 (2018), 8153–8161. issn: 2040-3364. doi: {10.1039/c8nr00571k}.

[191] Xiangru Kong, Linyang Li, and Francois M. Peeters. “Topological Dirac semimetal phase in GexSny alloys”. In: APPLIED

PHYSICS LETTERS 112.25 (2018). issn: 0003-6951. doi: {10.1063/1.5037121}.

[192] Guowei Li, Yan Sun, Jiancun Rao, Jiquan Wu, Anil Kumar, Qiu Nan Xu, Chenguang Fu, Enke Liu, Graeme R. Blake,

Peter Werner, Baiqi Shao, Kai Liu, Stuart Parkin, Xianjie Liu, Mats Fahlman, Sz-Chian Liou, Gudrun Auffermann,

Jian Zhang, Claudia Felser, and Xinliang Feng. “Carbon-Tailored Semimetal MoP as an Efficient Hydrogen Evolution

Electrocatalyst in Both Alkaline and Acid Media”. In: ADVANCED ENERGY MATERIALS 8.24 (2018). issn: 16146832. doi: {10.1002/aenm.201801258}.

[193] Junpu Li, Wen Chen, Qinghua Qin, and Zhuojia Fu. “A modified dual-level fast multipole boundary element method

for large-scale three-dimensional potential problems”. In: COMPUTER PHYSICS COMMUNICATIONS 233 (2018),

51–61. issn: 0010-4655. doi: {10.1016/j.cpc.2018.06.024}.

[194] Peng Li, Weikang Wu, Yan Wen, Chenhui Zhang, Junwei Zhang, Senfu Zhang, Zhiming Yu, Shengyuan A. Yang,

  1. Manchon, and Xi-xiang Zhang. “Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions

composed of Weyl semimetal WTe2”. In: NATURE COMMUNICATIONS 9 (2018). issn: 2041-1723. doi: {10.1038/

s41467-018-06518-1}.

[195] Si Li, Ying Liu, Botao Fu, Zhi-Ming Yu, Shengyuan A. Yang, and Yugui Yao. “Almost ideal nodal-loop semimetal in

monoclinic CuTeO3 material”. In: PHYSICAL REVIEW B 97.24 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.97.

245148}.

[196] Si Li, Ying Liu, Shan-Shan Wang, Zhi-Ming Yu, Shan Guan, Xian-Lei Sheng, Yugui Yao, and Shengyuan A. Yang.

“Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line, and Dirac point in bulk and monolayer X3SiTe6

(X = Ta, Nb)”. In: PHYSICAL REVIEW B 97.4 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.97.045131}.

[197] Xinru Li, Zeying Zhang, Yugui Yao, and Hongbin Zhang. “High throughput screening for two-dimensional topological

insulators”. In: 2D MATERIALS 5.4 (2018). issn: 2053-1583. doi: {10.1088/2053-1583/aadb1e}.

[198] Guodong Liu, Lei Jin, Xuefang Dai, Guifeng Chen, and Xiaoming Zhang. “Topological phase with a critical-type nodal

line state in intermetallic CaPd”. In: PHYSICAL REVIEW B 98.7 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.

98.075157}.

[199] Lei Liu and Houlong L. Zhuang. “PtP2: An example of exploring the hidden Cairo tessellation in the pyrite structure

for discovering novel two-dimensional materials”. In: PHYSICAL REVIEW MATERIALS 2.11 (2018). issn: 2475-9953.

doi: {10.1103/PhysRevMaterials.2.114003}.

[200] Qin Liu, Chen Chen, Tong Zhang, Rui Peng, Ya-Jun Yan, Chen-Hao-Ping Wen, Xia Lou, Yu-Long Huang, Jin-Peng

Tian, Xiao-Li Dong, Guang-Wei Wang, Wei-Cheng Bao, Qiang-Hua Wang, Zhi-Ping Yin, Zhong-Xian Zhao, and

Dong-Lai Feng. “Robust and Clean Majorana Zero Mode in the Vortex Core of High-Temperature Superconductor

(Li0.84Fe0.16)OHFeSe”. In: PHYSICAL REVIEW X 8.4 (2018). issn: 2160-3308. doi: {10.1103/PhysRevX.8.041056}.

[201] Qing Lu, Ran Ran, Yan Cheng, Busheng Wang, Zhao-Yi Zeng, and Xiang-Rong Chen. “Robust large gap quantum

spin Hall insulators in methyl and ethynyl functionalized TISb buckled honeycombs”. In: JOURNAL OF APPLIED

PHYSICS 124.3 (2018). issn: 0021-8979. doi: {10.1063/1.5033999}.

[202] Qing Lu, Busheng Wang, Xiang-Rong Chen, and Wu-Ming Liu. “Robust large-gap quantum spin Hall insulators in

methyl-functionalized III-Bi buckled honeycombs”. In: PHYSICAL REVIEW MATERIALS 2.1 (2018). issn: 2475-9953.

doi: {10.1103/PhysRevMaterials.2.014005}.

[203] Da-Shuai Ma, Jianhui Zhou, Botao Fu, Zhi-Ming Yu, Cheng-Cheng Liu, and Yugui Yao. “Mirror protected multiple

nodal line semimetals and material realization”. In: PHYSICAL REVIEW B 98.20 (2018). issn: 2469-9950. doi: {10.

1103/PhysRevB.98.201104}.

[204] Xiaoyu Ma, Dahu Chang, Chunxiang Zhao, Rui Li, Xiaoyu Huang, Zaiping Zeng, Xiaowei Huang, and Yu Jia. “Geometric

structures and electronic properties of the Bi2X2Y (X, Y = O, S, Se, and Te) ternary compound family: a systematic

DFT study”. In: JOURNAL OF MATERIALS CHEMISTRY C 6.48 (2018), 13241–13249. issn: 2050-7526. doi: {10.

1039/c8tc04587a}.

[205] Yandong Ma, Liangzhi Kou, Baibiao Huang, Ying Dai, and Thomas Heine. “Two-dimensional ferroelastic topological

insulators in single-layer Janus transition metal dichalcogenides MSSe(M = Mo, W)”. In: PHYSICAL REVIEW B 98.8

(2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.085420}.

[206] Antimo Marrazzo, Marco Gibertini, Davide Campi, Nicolas Mounet, and Nicola Marzari. “Prediction of a Large-Gap

and Switchable Kane-Mele Quantum Spin Hall Insulator”. In: PHYSICAL REVIEW LETTERS 120.11 (2018). issn:

0031-9007. doi: {10.1103/PhysRevLett.120.117701}.

[207] H. Miao, T. T. Zhang, L. Wang, D. Meyers, A. H. Said, Y. L. Wang, Y. G. Shi, H. M. Weng, Z. Fang, and M. P. M.

Dean. “Observation of Double Weyl Phonons in Parity-Breaking FeSi”. In: PHYSICAL REVIEW LETTERS 121.3

(2018). issn: 0031-9007. doi: {10.1103/PhysRevLett.121.035302}.

[208] Xiaojuan Ni, Wei Jiang, Huaqing Huang, Kyung-Hwan Jin, and Feng Liu. “Intrinsic quantum anomalous hall effect in a

two-dimensional anilato-based lattice”. In: NANOSCALE 10.25 (2018), 11901–11906. issn: 2040-3364. doi: {10.1039/

c8nr02651c}.

[209] Bo Peng, Changming Yue, Hao Zhang, Zhong Fang, and Hongming Weng. “Predicting Dirac semimetals based on sodium

ternary compounds”. In: NPJ COMPUTATIONAL MATERIALS 4 (2018). issn: 2057-3960. doi: {10.1038/s41524018-0124-5}.

[210] D. A. Pshenay-Severin, Y. V. Ivanov, A. A. Burkov, and A. T. Burkov. “Band structure and unconventional electronic

topology of CoSi”. In: JOURNAL OF PHYSICS-CONDENSED MATTER 30.13 (2018). issn: 0953-8984. doi: {10 .

1088/1361-648X/aab0ba}.

[211] Yu Qie, Junyi Liu, Xiaoyin Li, Shuo Wang, Qiang Sun, and Puru Jena. “Interpenetrating silicene networks: A topological nodal-line semimetal with potential as an anode material for sodium ion batteries”. In: PHYSICAL REVIEW

MATERIALS 2.8 (2018). issn: 2475-9953. doi: {10.1103/PhysRevMaterials.2.084201}.

[212] Bahadur Singh, Guoqing Chang, Tay-Rong Chang, Shin-Ming Huang, Chenliang Su, Ming-Chieh Lin, Hsin Lin, and

Arun Bansil. “Tunable double-Weyl Fermion semimetal state in the SrSi2 materials class”. In: SCIENTIFIC REPORTS

8 (2018). issn: 2045-2322. doi: {10.1038/s41598-018-28644-y}.

[213] Bahadur Singh, Barun Ghosh, Chenliang Su, Hsin Lin, Amit Agarwal, and Arun Bansil. “Topological Hourglass Dirac

Semimetal in the Nonpolar Phase of Ag2BiO3”. In: PHYSICAL REVIEW LETTERS 121.22 (2018). issn: 0031-9007.

doi: {10.1103/PhysRevLett.121.226401}.

[214] Bahadur Singh, Sougata Mardanya, Chenliang Su, Hsin Lin, Amit Agarwal, and Arun Bansil. “Spin-orbit coupling driven

crossover from a starfruitlike nodal semimetal to Dirac and Weyl semimetal state in CaAuAs”. In: PHYSICAL REVIEW

B 98.8 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.085122}.

[215] Bahadur Singh, Xiaoting Zhou, Hsin Lin, and Arun Bansil. “Saddle-like topological surface states on the TT ‘ X family

of compounds (T, T ‘ = Transition metal, X = Si, Ge)”. In: PHYSICAL REVIEW B 97.7 (2018). issn: 2469-9950. doi:

{10.1103/PhysRevB.97.075125}.

[216] Sobhit Singh, QuanSheng Wu, Changming Yue, Aldo H. Romero, and Alexey A. Soluyanov. “Topological phonons and

thermoelectricity in triple-point metals”. In: PHYSICAL REVIEW MATERIALS 2.11 (2018). issn: 2475-9953. doi:

{10.1103/PhysRevMaterials.2.114204}.

[217] Zhi-Gang Song, Claudia Felser, and Yan Sun. “Prediction of ideal triple degenerate points in HfIrAs and HfIrBi”. In:

PHYSICAL REVIEW B 98.16 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.165131}.

[218] Qilong Sun and Nicholas Kioussis. “Prediction of manganese trihalides as two-dimensional Dirac half-metals”. In: PHYSICAL REVIEW B 97.9 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.97.094408}.

[219] Polychronis Tsipas, Sotirios Fragkos, Dimitra Tsoutsou, Carlos Alvarez, Roberto Sant, Gilles Renaud, Hanako Okuno,

and Athanasios Dimoulas. “Direct Observation at Room Temperature of the Orthorhombic Weyl Semimetal Phase in

Thin Epitaxial MoTe2”. In: ADVANCED FUNCTIONAL MATERIALS 28.33 (2018). issn: 1616-301X. doi: {10.1002/

adfm.201802084}.

[220] Polychronis Tsipas, Dimitra Tsoutsou, Sotirios Fragkos, Roberto Sant, Carlos Alvarez, Hanako Okuno, Gilles Renaud,

Reynald Alcotte, Thierry Baron, and Athanasios Dimoulas. “Massless Dirac Fermions in ZrTe2 Semimetal Grown on

InAs(111) by van der Waals Epitaxy”. In: ACS NANO 12.2 (2018), 1696–1703. issn: 1936-0851. doi: {10.1021/acsnano.

7b08350}.

[221] Miguel M. Ugeda, Artem Pulkin, Shujie Tang, Hyejin Ryu, Quansheng Wu, Yi Zhang, Dillon Wong, Zahra Pedramrazi,

Ana Martin-Recio, Yi Chen, Feng Wang, Zhi-Xun Shen, Sung-Kwan Mo, Oleg V. Yazyev, and Michael F. Crommie.

“Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2”. In: NATURE

COMMUNICATIONS 9 (2018). issn: 2041-1723. doi: {10.1038/s41467-018-05672-w}.

[222] John W. Villanova and Kyungwha Park. “Magnetic field induced Weyl semimetal from Wannier-function-based tightbinding model”. In: PHYSICAL REVIEW B 98.7 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.075123}.

[223] Busheng Wang, Heng Gao, Qing Lu, WenHui Xie, Yanfeng Ge, Yong-Hong Zhao, Kaicheng Zhang, and Yong Liu.

“Type-I and type-II nodal lines coexistence in the antiferromagnetic monolayer CrAs2”. In: PHYSICAL REVIEW B

98.11 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.115164}.

[224] Jian-Tao Wang, Changfeng Chen, and Yoshiyuki Kawazoe. “Topological nodal line semimetal in an orthorhombic

graphene network structure”. In: PHYSICAL REVIEW B 97.24 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.

97.245147}.

[225] Qi Wang, Yuanfeng Xu, Rui Lou, Zhonghao Liu, Man Li, Yaobo Huang, Dawei Shen, Hongming Weng, Shancai Wang,

and Hechang Lei. “Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl

fermions”. In: NATURE COMMUNICATIONS 9 (2018). issn: 2041-1723. doi: {10.1038/s41467-018-06088-2}.

[226] R. Wang, Y. J. Jin, J. Z. Zhao, Z. J. Chen, Y. J. Zhao, and H. Xu. “Ferromagnetic Weyl fermions in CrO2”. In:

PHYSICAL REVIEW B 97.19 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.97.195157}.

[227] Xiaomeng Wang, Juefei Wu, Jinghui Wang, Tong Chen, Hao Gao, Pengchao Lu, Qun Chen, Chi Ding, Jinsheng Wen,

and Jian Sun. “Pressure-induced structural and electronic transitions in bismuth iodide”. In: PHYSICAL REVIEW B

98.17 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.174112}.

[228] QuanSheng Wu, Christophe Piveteau, Zhida Song, and Oleg Yazyev V. “MgTa2N3: A reference Dirac semimetal”. In:

PHYSICAL REVIEW B 98.8 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.081115}.

[229] Yun Wu, Gil Drachuck, Lin-Lin Wang, Duane D. Johnson, Przemyslaw Swatek, Benjamin Schrunk, Daixiang Mou,

Lunan Huang, S. L. Bud’ko, P. C. Canfield, and Adam Kaminski. “Electronic structure of the topological superconductor

candidate Au2Pb”. In: PHYSICAL REVIEW B 98.16 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.161107}.

[230] Huanhuan Xie and Qiang Sun. “Cu2Te-Ag2Te lateral topological insulator heterojunction: stability and properties”. In:

NANOTECHNOLOGY 29.50 (2018). issn: 0957-4484. doi: {10.1088/1361-6528/aae4f8}.

[231] Chunqiang Xu, Bin Li, Wenhe Jiao, Wei Zhou, Bin Qian, Raman Sankar, Nikolai D. Zhigadlo, Yanpeng Qi, Dong

Qian, Fang-Cheng Chou, and Xiaofeng Xu. “Topological Type-II Dirac Fermions Approaching the Fermi Level in a

Transition Metal Dichalcogenide NiTe2”. In: CHEMISTRY OF MATERIALS 30.14 (2018), 4823–4830. issn: 0897-4756.

doi: {10.1021/acs.chemmater.8b02132}.

[232] N. Xu, Y. T. Qian, Q. S. Wu, G. Autes, C. E. Matt, B. Q. Lv, M. Y. Yao, V. N. Strocov, E. Pomjakushina, K. Conder,

    1. Plumb, M. Radovic, O. V. Yazyev, T. Qian, H. Ding, J. Mesot, and M. Shi. “Trivial topological phase of CaAgP

and the topological nodal-line transition in CaAg(P1-xAsx)”. In: PHYSICAL REVIEW B 97.16 (2018). issn: 2469-9950.

doi: {10.1103/PhysRevB.97.161111}.

[233] Jiali Yang, Yuanjun Jin, Wangping Xu, Baobing Zheng, Rui Wang, and Hu Xu. “Oxidation-Induced Topological Phase

Transition in Monolayer 1T ‘-WTe2”. In: JOURNAL OF PHYSICAL CHEMISTRY LETTERS 9.16 (2018), 4783–4788.

issn: 1948-7185. doi: {10.1021/acs.jpclett.8b01999}.

[234] Ke Yang, Wei-Qing Huang, Wangyu Hu, Gui-Fang Huang, and Shuangchun Wen. “Substrate-induced magnetism and

topological phase transition in silicene”. In: NANOSCALE 10.30 (2018), 14667–14677. issn: 2040-3364. doi: {10.1039/

c8nr04570d}.

[235] Wei-Wei Yang, Lei Li, Jing-Sheng Zhao, Xiao-Xiong Liu, Jian-Bo Deng, Xiao-Ma Tao, and Xian-Ru Hu. “Quantum

anomalous Hall effect and topological phase transition in two-dimensional antiferromagnetic Chern insulator NiOsCl6”.

In: JOURNAL OF PHYSICS-CONDENSED MATTER 30.18 (2018). issn: 0953-8984. doi: {10 . 1088 / 1361 - 648X /

aab7c1}.

[236] C-J. Yi, B. Q. Lv, Q. S. Wu, B-B. Fu, X. Gao, M. Yang, X-L. Peng, M. Li, Y-B. Huang, P. Richard, M. Shi, G. Li,

Oleg V. Yazyev, Y-G. Shi, T. Qian, and H. Ding. “Observation of a nodal chain with Dirac surface states in TiB2”. In:

PHYSICAL REVIEW B 97.20 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.97.201107}.

[237] Hulei Yu, Dexiang Gao, Xiancheng Wang, Xueyan Du, Xiaohuan Lin, Wenhan Guo, Ruqiang Zou, Changqing Jin, Kuo Li,

and Yue Chen. “Unraveling a novel ferroelectric GeSe phase and its transformation into a topological crystalline insulator

under high pressure”. In: NPG ASIA MATERIALS 10 (2018), 882–887. issn: 1884-4049. doi: {10.1038/s41427-0180081-y}.

[238] Bingwen Zhang, Yina Huang, Weicheng Bao, Baolin Wang, Qiangqiang Meng, Lele Fan, and Qinfang Zhang. “Twodimensional stable transition metal carbides (MnC and NbC) with prediction and novel functionalizations”. In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20.39 (2018), 25437–25445. issn: 1463-9076. doi: {10.1039/c8cp04541k}.

[239] Kai-Cheng Zhang, Yong-Feng Li, Yong Liu, and Yan Zhu. “Protecting quantum anomalous Hall state from thermal

fluctuation via the giant magnetic anisotropy of Os-based dimers”. In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS

20.44 (2018), 28169–28175. issn: 1463-9076. doi: {10.1039/c8cp05407j}.

[240] Minping Zhang, Zongxian Yang, and Guangtao Wang. “Coexistence of Type-I and Type-II Weyl Points in the WeylSemimetal OsC2”. In: JOURNAL OF PHYSICAL CHEMISTRY C 122.6 (2018), 3533–3538. issn: 1932-7447. doi:

{10.1021/acs.jpcc.8b00920}.

[241] Run-Wu Zhang, Cheng-Cheng Liu, Da-Shuai Ma, Maoyuan Wang, and Yugui Yao. “Nodal-line semimetal states in the

positive-electrode material of a lead-acid battery: Lead dioxide family and its derivatives”. In: PHYSICAL REVIEW B

98.3 (2018). issn: 2469-9950. doi: {10.1103/PhysRevB.98.035144}.

[242] Wei Zhang, Quansheng Wu, Oleg Yazyev V, Hongming Weng, Zhengxiao Guo, Wen-Dan Cheng, and Guo-Liang Chai.

“Topological phase transitions driven by strain in monolayer tellurium”. In: PHYSICAL REVIEW B 98.11 (2018). issn:

2469-9950. doi: {10.1103/PhysRevB.98.115411}.

[243] Xiaoming Zhang, Zhi-Ming Yu, Ziming Zhu, Weikang Wu, Shan-Shan Wang, Xian-Lei Sheng, and Shengyuan A. Yang.

“Nodal loop and nodal surface states in the Ti3Al family of materials”. In: PHYSICAL REVIEW B 97.23 (2018). issn:

2469-9950. doi: {10.1103/PhysRevB.97.235150}.

[244] Xiuwen Zhang, Qihang Liu, Qiunan Xu, Xi Dai, and Alex Zunger. “Topological Insulators versus Topological Dirac

Semimetals in Honeycomb Compounds”. In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 140.42 (2018),

13687–13694. issn: 0002-7863. doi: {10.1021/jacs.8b06652}.

[245] Yinchang Zhao, Xi Chen, Zhenhong Dai, Chao Zhang, Chao Lian, Shuming Zeng, Sheng Meng, and Jun Ni. “Robust

quantum spin Hall state and quantum anomalous Hall state in graphenelike BC3 with adatoms”. In: NEW JOURNAL

OF PHYSICS 20 (2018). issn: 1367-2630. doi: {10.1088/1367-2630/aad357}.

[246] Xiaoqing Zhou, Qihang Liu, Quansheng Wu, Tom Nummy, Haoxiang Li, Justin Griffith, Stephen Parham, Justin Waugh,

Eve Emmanouilidou, Bing Shen, Oleg Yazyev V, Ni Ni, and Daniel Dessau. “Coexistence of tunable Weyl points and

topological nodal lines in ternary transition-metal telluride TaIrTe4”. In: PHYSICAL REVIEW B 97.24 (2018). issn:

2469-9950. doi: {10.1103/PhysRevB.97.241102}.

[247] Ziming Zhu, Ying Liu, Zhi-Ming Yu, Shan-Shan Wang, Y. X. Zhao, Yuanping Feng, Xian-Lei Sheng, and Shengyuan A.

Yang. “Quadratic contact point semimetal: Theory and material realization”. In: PHYSICAL REVIEW B 98.12 (2018).

issn: 2469-9950. doi: {10.1103/PhysRevB.98.125104}.

[248] Rui Tan, Zehou Li, Pan Zhou, Zengsheng Ma, Chaogui Tan, and Lizhong Sun. “Coexistence of Weyl and Type-II Triply

Degenerate Fermions in a Ternary Topological Semimetal YPtP”. In: PHYSICA STATUS SOLIDI-RAPID RESEARCH

LETTERS (). issn: 1862-6254. doi: {10.1002/pssr.201900421}.

Citations

Please cite this paper when using WannierTools for your researchs:

@article{WU2017,
title = "WannierTools : An open-source software package for novel topological materials",
journal = "Computer Physics Communications",
volume = "224",
pages = "405 - 416",
year = "2018",
issn = "0010-4655",
doi = "https://doi.org/10.1016/j.cpc.2017.09.033",
url = "http://www.sciencedirect.com/science/article/pii/S0010465517303442",
author = "QuanSheng Wu and ShengNan Zhang and Hai-Feng Song and Matthias Troyer and Alexey A. Soluyanov",
keywords = "Novel topological materials, Topological number, Surface state, Tight-binding model"
}

Correspondence

Please report bugs to wuquansheng at gmail.com.

Licence

The WannierTools code is licensed under GPLv3. The licence text in the LICENSE file is included in the root directory of the WannierTools distribution.

Authors and contributions

WannierTools 2.x have been written by :

  • QuanSheng Wu (EPFL, Switzerland)
  • ShengNan Zhang (EPFL, Switzerland)

Contributors to the code include:

  • Changming Yue (IOP, Beijing, China): Tight binding symmetrization
  • Yifei Guan (EPFL, Switzerland): Landau level
  • Yi Liu (BNU, Beijing, China): Runge-Kutta integration
_images/wannier_tools-logo-crop.png

Sponsors

This work was sponsored by the following institutes:

_images/wanniertools-sponsors.jpg